Skip to main content
Top

2019 | OriginalPaper | Chapter

A Differential Evolution to Find the Best Material Groupings in Truss Optimization

Authors : José P. G. Carvalho, Afonso C. C. Lemonge, Patrícia H. Hallak, Dênis E. C. Vargas

Published in: EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, the structural optimization has received a strong emphasis that leads in the formulation of the objective function questions regarding the possible combination of various materials. That is, the multi- material optimization in which these materials present different characteristics between them. For example, those referring to the behavior of the material that can be physically linear or non-linear, linear behaviors with different modulus of elasticity, different costs depending on the volume to be used, different behaviors in tension and compression, and so on. The topological structural optimization, particularly, has been receiving efforts in this direction and is extremely adequate to address this type of problem. Another issue in this process is to include the possibility of limiting the number of different materials to be used in the optimized final design. The objective of this paper is to propose a strategy to obtain solutions for structural optimization problems in sizing, shape and topology, where the use of different materials will be incorporated in the formulation of the problem, besides the possibility of the designer choosing the maximum number of these materials. The search algorithm to be used is the Differential Evolution and the control of the maximum number of materials to be used is done through the use of cardinality constraints.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Achtziger, W.: Truss topology optimization including bar properties different for tension and compression. Struct. Optim. 12(1), 63–74 (1996)CrossRef Achtziger, W.: Truss topology optimization including bar properties different for tension and compression. Struct. Optim. 12(1), 63–74 (1996)CrossRef
2.
go back to reference Angelo, J.S., Bernardino, H.S., Barbosa, H.J.: Ant colony approaches for multiobjective structural optimization problems with a cardinality constraint. Adv. Eng. Softw. 80, 101–115 (2015)CrossRef Angelo, J.S., Bernardino, H.S., Barbosa, H.J.: Ant colony approaches for multiobjective structural optimization problems with a cardinality constraint. Adv. Eng. Softw. 80, 101–115 (2015)CrossRef
3.
go back to reference Barbosa, H.J.C., Lemonge, A.C.C.: A genetic algorithm encoding for a class of cardinality constraints. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 1193–1200. ACM Press (2005) Barbosa, H.J.C., Lemonge, A.C.C.: A genetic algorithm encoding for a class of cardinality constraints. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 1193–1200. ACM Press (2005)
4.
go back to reference Barbosa, H.J.C., Lemonge, A.C.C., Borges, C.C.H.: A genetic algorithm encoding for cardinality constraints and automatic variable linking in structural optimization. Eng. Struct. 30, 3708–3723 (2008)CrossRef Barbosa, H.J.C., Lemonge, A.C.C., Borges, C.C.H.: A genetic algorithm encoding for cardinality constraints and automatic variable linking in structural optimization. Eng. Struct. 30, 3708–3723 (2008)CrossRef
5.
go back to reference Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Archive Appl. Mech. 69(9–10), 635–654 (1999)MATH Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Archive Appl. Mech. 69(9–10), 635–654 (1999)MATH
6.
go back to reference Biedermann, J.D.: Representing design knowledge with neural networks. Comput.-Aided Civil Infrastruct. Eng. 12(4), 277–285 (1997)CrossRef Biedermann, J.D.: Representing design knowledge with neural networks. Comput.-Aided Civil Infrastruct. Eng. 12(4), 277–285 (1997)CrossRef
7.
go back to reference Biedermann, J.D., Grierson, D.E.: A generic model for building design. Eng. Comput. 11(3), 173–184 (1995)CrossRef Biedermann, J.D., Grierson, D.E.: A generic model for building design. Eng. Comput. 11(3), 173–184 (1995)CrossRef
8.
go back to reference Carvalho, J.P., Lemonge, A.C., Carvalho, É.C., Hallak, P.H., Bernardino, H.S.: Truss optimization with multiple frequency constraints and automatic member grouping. Struct. Multidiscipl. Optim. 57(2), 547–577 (2018)CrossRef Carvalho, J.P., Lemonge, A.C., Carvalho, É.C., Hallak, P.H., Bernardino, H.S.: Truss optimization with multiple frequency constraints and automatic member grouping. Struct. Multidiscipl. Optim. 57(2), 547–577 (2018)CrossRef
9.
go back to reference Galante, M.: Genetic algorithms as an approach to optimize real-world trusses. Int. J. Numer. Methods Eng. 39(3), 361–382 (1996)MathSciNetCrossRef Galante, M.: Genetic algorithms as an approach to optimize real-world trusses. Int. J. Numer. Methods Eng. 39(3), 361–382 (1996)MathSciNetCrossRef
10.
go back to reference Gibiansky, L.V., Sigmund, O.: Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48(3), 461–498 (2000)MathSciNetCrossRef Gibiansky, L.V., Sigmund, O.: Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48(3), 461–498 (2000)MathSciNetCrossRef
11.
go back to reference Grierson, D.E., Cameron, G.E.: Soda-Structural Optimization Design and Analysis. Waterloo Engineering Software, Waterloo, Ontario, Canada (1987) Grierson, D.E., Cameron, G.E.: Soda-Structural Optimization Design and Analysis. Waterloo Engineering Software, Waterloo, Ontario, Canada (1987)
12.
go back to reference Herencia, J.E., Haftka, R.T.: Structural optimization with limited number of element properties. Struct. Multidiscipl. Optim. 41(5), 817–820 (2010)CrossRef Herencia, J.E., Haftka, R.T.: Structural optimization with limited number of element properties. Struct. Multidiscipl. Optim. 41(5), 817–820 (2010)CrossRef
13.
go back to reference Herencia, J.E., Haftka, R.T., Balabanov, V.: Structural optimization of composite structures with limited number of element properties. Struct. Multidiscipl. Optim. 47(2), 233–245 (2013)MathSciNetCrossRef Herencia, J.E., Haftka, R.T., Balabanov, V.: Structural optimization of composite structures with limited number of element properties. Struct. Multidiscipl. Optim. 47(2), 233–245 (2013)MathSciNetCrossRef
14.
go back to reference Kanneth, V., Price, R.M.S., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Springer (2005) Kanneth, V., Price, R.M.S., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Springer (2005)
15.
go back to reference Kaveh, A., Zolghadr, A.: A multi-set charged system search for truss optimization with variables of different natures; element grouping. Period. Polytech. Civil Eng. 55(2), 87 (2011)CrossRef Kaveh, A., Zolghadr, A.: A multi-set charged system search for truss optimization with variables of different natures; element grouping. Period. Polytech. Civil Eng. 55(2), 87 (2011)CrossRef
16.
go back to reference Kripka, M., Medeiros, G.F., Lemonge, A.C.C.: Structural optimization of reinforced concrete building grillages considering cardinality constraints. In: 10th World Congress on Structural and Multidisciplinary Optimization, pp. 01–06 (2013) Kripka, M., Medeiros, G.F., Lemonge, A.C.C.: Structural optimization of reinforced concrete building grillages considering cardinality constraints. In: 10th World Congress on Structural and Multidisciplinary Optimization, pp. 01–06 (2013)
17.
go back to reference Kripka, M., Medeiros, G.F., Lemonge, A.C.C.: Use of optimization for automatic grouping of beam cross-section dimensions in reinforced concrete building structures. Eng. Struct. 99, 311–318 (2015)CrossRef Kripka, M., Medeiros, G.F., Lemonge, A.C.C.: Use of optimization for automatic grouping of beam cross-section dimensions in reinforced concrete building structures. Eng. Struct. 99, 311–318 (2015)CrossRef
18.
go back to reference Kukkonen, S., Lampinen, J.: Gde3: the third evolution step of generalized differential evolution. In: IEEE Congress on Evolutionary Computation (CEC 2005), pp. 443–450. IEEE (2005) Kukkonen, S., Lampinen, J.: Gde3: the third evolution step of generalized differential evolution. In: IEEE Congress on Evolutionary Computation (CEC 2005), pp. 443–450. IEEE (2005)
19.
go back to reference Lemonge, A., Barbosa, H., Coutinho, A., Borges, C.: Multiple cardinality constraints and automatic member grouping in the optimal design of steel framed structures. Eng. Struct. 33, 433–444 (2011)CrossRef Lemonge, A., Barbosa, H., Coutinho, A., Borges, C.: Multiple cardinality constraints and automatic member grouping in the optimal design of steel framed structures. Eng. Struct. 33, 433–444 (2011)CrossRef
20.
go back to reference Lemonge, A.C., Barbosa, H.J.: An adaptive penalty scheme for genetic algorithms in structural optimization. Int. J. Numer. Methods Eng. 59(5), 703–736 (2004)CrossRef Lemonge, A.C., Barbosa, H.J.: An adaptive penalty scheme for genetic algorithms in structural optimization. Int. J. Numer. Methods Eng. 59(5), 703–736 (2004)CrossRef
21.
go back to reference Lemonge, A.C.C., Barbosa, H.J.C., Coutinho, A.L.G.A., Borges, C.C.H.: Multiple cardinality constraints and automatic member grouping in the optimal design of steel framed structures. Eng. Struct. 33(2), 433–444 (2011)CrossRef Lemonge, A.C.C., Barbosa, H.J.C., Coutinho, A.L.G.A., Borges, C.C.H.: Multiple cardinality constraints and automatic member grouping in the optimal design of steel framed structures. Eng. Struct. 33(2), 433–444 (2011)CrossRef
22.
go back to reference Lemonge, A.C.C., Barbosa, H.J.C., da Fonseca, L.G., Coutinho, A.L.G.A.: A genetic algorithm for topology optimization of dome structures. In: Proceedings of the 2nd International Conference on Engineering Optimization EngOpt (2010) Lemonge, A.C.C., Barbosa, H.J.C., da Fonseca, L.G., Coutinho, A.L.G.A.: A genetic algorithm for topology optimization of dome structures. In: Proceedings of the 2nd International Conference on Engineering Optimization EngOpt (2010)
23.
go back to reference Liu, X., Cheng, G., Wang, B., Lin, S.: Optimum design of pile foundation by automatic grouping genetic algorithms. ISRN Civil Eng. 2012 (2012) Liu, X., Cheng, G., Wang, B., Lin, S.: Optimum design of pile foundation by automatic grouping genetic algorithms. ISRN Civil Eng. 2012 (2012)
24.
go back to reference Liu, X., Cheng, G., Yan, J., Jiang, L.: Singular optimum topology of skeletal structures with frequency constraints by AGGA. Struct. Multidiscipl. Optim. 45(3), 451–466 (2012)CrossRef Liu, X., Cheng, G., Yan, J., Jiang, L.: Singular optimum topology of skeletal structures with frequency constraints by AGGA. Struct. Multidiscipl. Optim. 45(3), 451–466 (2012)CrossRef
25.
go back to reference Makoto, O.: Optimization of Finite Dimensional Structures, vol. 405, p. 15. CRC Press Taylor & Francis Group, Japan (2011) Makoto, O.: Optimization of Finite Dimensional Structures, vol. 405, p. 15. CRC Press Taylor & Francis Group, Japan (2011)
26.
go back to reference Ramos, A.S., Paulino, G.H.: Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct. Multidiscipl. Optim. 51(2), 287–304 (2015)MathSciNetCrossRef Ramos, A.S., Paulino, G.H.: Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct. Multidiscipl. Optim. 51(2), 287–304 (2015)MathSciNetCrossRef
27.
go back to reference Shea, K., Cagan, J., Fenves, S.J.: A shape annealing approach to optimal truss design with dynamic grouping of members. J. Mech. Design 119(3), 388–394 (1997)CrossRef Shea, K., Cagan, J., Fenves, S.J.: A shape annealing approach to optimal truss design with dynamic grouping of members. J. Mech. Design 119(3), 388–394 (1997)CrossRef
28.
go back to reference Sigmund, O., Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45(6), 1037–1067 (1997)MathSciNetCrossRef Sigmund, O., Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45(6), 1037–1067 (1997)MathSciNetCrossRef
29.
go back to reference Sokół, T.: A 99 line code for discretized michell truss optimization written in mathematica. Struct. Multidiscipl. Optim. 43(2), 181–190 (2011)CrossRef Sokół, T.: A 99 line code for discretized michell truss optimization written in mathematica. Struct. Multidiscipl. Optim. 43(2), 181–190 (2011)CrossRef
30.
go back to reference Storn, R., Price, K.: Differential evolution a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report 95-012, University of California, Berkeley, CA (1995) Storn, R., Price, K.: Differential evolution a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report 95-012, University of California, Berkeley, CA (1995)
31.
go back to reference Wallin, M., Ivarsson, N., Ristinmaa, M.: Large strain phase-field-based multi-material topology optimization. Int. J. Numer. Methods Eng. 104(9), 887–904 (2015)MathSciNetCrossRef Wallin, M., Ivarsson, N., Ristinmaa, M.: Large strain phase-field-based multi-material topology optimization. Int. J. Numer. Methods Eng. 104(9), 887–904 (2015)MathSciNetCrossRef
32.
go back to reference Wang, M.Y., Chen, S., Wang, X., Mei, Y.: Design of multimaterial compliant mechanisms using level-set methods. J. Mech. Design 127(5), 941–956 (2005)CrossRef Wang, M.Y., Chen, S., Wang, X., Mei, Y.: Design of multimaterial compliant mechanisms using level-set methods. J. Mech. Design 127(5), 941–956 (2005)CrossRef
33.
go back to reference Yulin, M., Xiaoming, W.: A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mech. Sinica 20(5), 507–518 (2004)MathSciNetCrossRef Yulin, M., Xiaoming, W.: A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mech. Sinica 20(5), 507–518 (2004)MathSciNetCrossRef
34.
go back to reference Zhang, X.S., Paulino, G.H., Ramos, A.S.: Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct. Multidiscipl. Optim. 57(1), 161–182 (2018)MathSciNetCrossRef Zhang, X.S., Paulino, G.H., Ramos, A.S.: Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct. Multidiscipl. Optim. 57(1), 161–182 (2018)MathSciNetCrossRef
35.
go back to reference Zhang, X.S., Paulino, G.H., Ramos Jr., A.S.: Multimaterial topology optimization with multiple volume constraints: combining the zpr update with a ground-structure algorithm to select a single material per overlapping set. Int. J. Numer. Methods Eng. 114(10), 1053–1073 (2018)MathSciNetCrossRef Zhang, X.S., Paulino, G.H., Ramos Jr., A.S.: Multimaterial topology optimization with multiple volume constraints: combining the zpr update with a ground-structure algorithm to select a single material per overlapping set. Int. J. Numer. Methods Eng. 114(10), 1053–1073 (2018)MathSciNetCrossRef
36.
go back to reference Zhou, S., Wang, M.Y.: Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition. Struct. Multidiscipl. Optim. 33(2), 89 (2007)MathSciNetCrossRef Zhou, S., Wang, M.Y.: Multimaterial structural topology optimization with a generalized cahn-hilliard model of multiphase transition. Struct. Multidiscipl. Optim. 33(2), 89 (2007)MathSciNetCrossRef
Metadata
Title
A Differential Evolution to Find the Best Material Groupings in Truss Optimization
Authors
José P. G. Carvalho
Afonso C. C. Lemonge
Patrícia H. Hallak
Dênis E. C. Vargas
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-97773-7_10

Premium Partners