Skip to main content
Top
Published in: Acta Mechanica 2/2024

24-11-2023 | Original Paper

A direct method for acoustic waves in hard particle–fluid suspensions

Author: C. Q. Ru

Published in: Acta Mechanica | Issue 2/2024

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A direct method is developed to study acoustic waves in a viscous fluid filled with randomly distributed hard spherical particles. The present method is based on the assumption that the relative shift of the velocity field of immersed hard particles from the host fluid is responsible for dynamic behavior of the suspension, and its role can be formulated by substituting the inertia term of governing equations by the acceleration field of the mass centre of the representative unit cell. Compared to existing models based on rather complicated mathematical formulation and numerical calculations, the present model enjoys conceptual and mathematical simplicity and the generality. Explicit formulas are derived for the attenuation coefficient and effective phase velocity of plane compression waves and shear waves. The efficiency and accuracy of the model are demonstrated by quantitatively good agreement between the predicted results and known data for a wide range of material and geometrical parameters. The proposed model could offer a relatively simple general method and easy-to-use explicit formulas to study acoustic wave propagation in hard particle-viscous fluid suspensions.
Literature
1.
go back to reference Julian McClements, D., et al.: Ultrasonic characterization of foods and drinks: principles, methods, and applications. Crit. Rev. Food Sci. Nutr. 37, 1–46 (1997)CrossRef Julian McClements, D., et al.: Ultrasonic characterization of foods and drinks: principles, methods, and applications. Crit. Rev. Food Sci. Nutr. 37, 1–46 (1997)CrossRef
2.
go back to reference Ritz, J.B., Caltagirone, J.P.: A numerical continuous model for the hydrodynamics of fluid particle systems. Int. J. Numer. Methods Fluids 30, 1067–1090 (1999)ADSCrossRef Ritz, J.B., Caltagirone, J.P.: A numerical continuous model for the hydrodynamics of fluid particle systems. Int. J. Numer. Methods Fluids 30, 1067–1090 (1999)ADSCrossRef
3.
go back to reference Brady, J.F.: Computer simulation of viscous suspensions. Chem. Eng. Sci. 56, 2921–2926 (2001)CrossRef Brady, J.F.: Computer simulation of viscous suspensions. Chem. Eng. Sci. 56, 2921–2926 (2001)CrossRef
4.
go back to reference Challis, R.E., et al.: Ultrasound techniques for characterizing colloidal dispersions. Rep. Prog. Phys. 68, 1541–1637 (2005)ADSCrossRef Challis, R.E., et al.: Ultrasound techniques for characterizing colloidal dispersions. Rep. Prog. Phys. 68, 1541–1637 (2005)ADSCrossRef
6.
7.
go back to reference Holmes, A.K., et al.: A wide bandwidth study of ultrasound velocity and attenuation in suspension. J. Colloid Interface Sci. 156, 261–268 (1993)ADSCrossRef Holmes, A.K., et al.: A wide bandwidth study of ultrasound velocity and attenuation in suspension. J. Colloid Interface Sci. 156, 261–268 (1993)ADSCrossRef
8.
go back to reference Sprik, R., Wegdam, G.H.: Acoustic band gaps in composites of solids and viscous liquids. Solid Satte Commun. 106(2), 77–81 (1998)ADSCrossRef Sprik, R., Wegdam, G.H.: Acoustic band gaps in composites of solids and viscous liquids. Solid Satte Commun. 106(2), 77–81 (1998)ADSCrossRef
9.
go back to reference Cowan, M.L., et al.: Group velocity of acoustic waves in strongly scattering media. Phy. Rev. E 58(5), 6626–6635 (1998)ADSCrossRef Cowan, M.L., et al.: Group velocity of acoustic waves in strongly scattering media. Phy. Rev. E 58(5), 6626–6635 (1998)ADSCrossRef
10.
go back to reference Mobley, J., et al.: Measurements and predictions of phase velocity and attenuation coefficient in suspension of elastic microspheres. J. Acoust. Soc. Am. 106, 652–659 (1999)ADSCrossRef Mobley, J., et al.: Measurements and predictions of phase velocity and attenuation coefficient in suspension of elastic microspheres. J. Acoust. Soc. Am. 106, 652–659 (1999)ADSCrossRef
11.
go back to reference Page, J.H., et al.: Diffusing acoustic wave spectroscopy of fluidized suspension. Phys. B 279, 130–133 (2000)ADSCrossRef Page, J.H., et al.: Diffusing acoustic wave spectroscopy of fluidized suspension. Phys. B 279, 130–133 (2000)ADSCrossRef
12.
go back to reference Spelt, P.M., et al.: Attenuation of sound in concentrated suspension: theory and experiments. J. Fluid Mech. 430, 51–86 (2001)ADSCrossRef Spelt, P.M., et al.: Attenuation of sound in concentrated suspension: theory and experiments. J. Fluid Mech. 430, 51–86 (2001)ADSCrossRef
13.
go back to reference Hipp AK et al. (2002) Acoustic characterization of concentrated suspensions and emulsions. Langmuir 18, part 1. Model analysis, 391–404; part 2. Experimental validation, 405–412 Hipp AK et al. (2002) Acoustic characterization of concentrated suspensions and emulsions. Langmuir 18, part 1. Model analysis, 391–404; part 2. Experimental validation, 405–412
14.
go back to reference Aggelis, D.G., et al.: An iterative effective medium approximation (IEMA) for wave dispersion and attenuation predictions in particulate composites, suspensions and emulsions. J. Acoust. Soc. Am. 116, 3443–3452 (2004)ADSCrossRefPubMed Aggelis, D.G., et al.: An iterative effective medium approximation (IEMA) for wave dispersion and attenuation predictions in particulate composites, suspensions and emulsions. J. Acoust. Soc. Am. 116, 3443–3452 (2004)ADSCrossRefPubMed
15.
go back to reference Aristegui, C., Angel, Y.C.: Effective mass density and stiffness derived from P-wave multiple scattering. Wave Mot. 44, 153–164 (2007)ADSMathSciNetCrossRef Aristegui, C., Angel, Y.C.: Effective mass density and stiffness derived from P-wave multiple scattering. Wave Mot. 44, 153–164 (2007)ADSMathSciNetCrossRef
16.
go back to reference Caleap, M., et al.: Effective dynamic constitutive parameters of acoustic metamaterials with random microstructures. New J. Phys. 14, 033014 (2012)ADSCrossRef Caleap, M., et al.: Effective dynamic constitutive parameters of acoustic metamaterials with random microstructures. New J. Phys. 14, 033014 (2012)ADSCrossRef
17.
go back to reference Challis, R.E., Pinfield, V.J.: Ultrasonic wave propagation in concentrated slurries—the modeling problem. Ultrasonics 54, 1737–1744 (2014)CrossRefPubMed Challis, R.E., Pinfield, V.J.: Ultrasonic wave propagation in concentrated slurries—the modeling problem. Ultrasonics 54, 1737–1744 (2014)CrossRefPubMed
18.
go back to reference Fedotovskii, V.S., et al.: Complex density of a suspension in an oscillatory wave process. Acoust. Phys. 60, 175–180 (2014)ADSCrossRef Fedotovskii, V.S., et al.: Complex density of a suspension in an oscillatory wave process. Acoust. Phys. 60, 175–180 (2014)ADSCrossRef
19.
go back to reference Pinfield, V.J., et al.: Ultrasound propagation in concentrated suspension. Phys. Procedia 70, 213–216 (2015)ADSCrossRef Pinfield, V.J., et al.: Ultrasound propagation in concentrated suspension. Phys. Procedia 70, 213–216 (2015)ADSCrossRef
20.
go back to reference Valier-Brasier, T., et al.: Sound propagation in dilute suspension of spheres: analytical comparison between coupled phase model and multiple scattering theory. J. Acoust. Soc. Am. 138, 2598–2612 (2015)ADSCrossRefPubMed Valier-Brasier, T., et al.: Sound propagation in dilute suspension of spheres: analytical comparison between coupled phase model and multiple scattering theory. J. Acoust. Soc. Am. 138, 2598–2612 (2015)ADSCrossRefPubMed
21.
go back to reference Forrester, D.M., et al.: Characterization of colloidal dispersions using ultrasound spectroscopy and multiple-scattering theory inclusive of shear-wave effects. Chem. Eng. Res. Des. 114, 69–78 (2016)CrossRef Forrester, D.M., et al.: Characterization of colloidal dispersions using ultrasound spectroscopy and multiple-scattering theory inclusive of shear-wave effects. Chem. Eng. Res. Des. 114, 69–78 (2016)CrossRef
22.
go back to reference Alam, M.M., et al.: The coherent shear wave in suspension. J. Phys: Confer. Ser. 1017, 012003 (2018) Alam, M.M., et al.: The coherent shear wave in suspension. J. Phys: Confer. Ser. 1017, 012003 (2018)
23.
go back to reference Alam, M.M., et al.: Effective dynamic properties of random complex media with spherical particles. J. Acoust. Soc. Am. 145, 3727–3740 (2019)ADSCrossRefPubMed Alam, M.M., et al.: Effective dynamic properties of random complex media with spherical particles. J. Acoust. Soc. Am. 145, 3727–3740 (2019)ADSCrossRefPubMed
24.
go back to reference Alam, M.M.: Ultrasonic propagation in concentrated colloidal dispersion: improvements in a hydrodynamic model. J. Dispers. Sci. Tech. 43, 1177–1186 (2022)CrossRef Alam, M.M.: Ultrasonic propagation in concentrated colloidal dispersion: improvements in a hydrodynamic model. J. Dispers. Sci. Tech. 43, 1177–1186 (2022)CrossRef
25.
go back to reference Guz, A.N.: Compressible, viscous fluid dynamics (review). Part I. Int. Appl. Mech. 36, 14–39 (2000)ADSCrossRef Guz, A.N.: Compressible, viscous fluid dynamics (review). Part I. Int. Appl. Mech. 36, 14–39 (2000)ADSCrossRef
26.
go back to reference Friend, J., Yeo, L.Y.: Microscale acoustofluidics : microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011)ADSCrossRef Friend, J., Yeo, L.Y.: Microscale acoustofluidics : microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011)ADSCrossRef
27.
go back to reference Chen, Y., et al.: Isentropic wave propagation in a viscous fluid. J. Acoust. Soc. Am. 136(4), 1692–1701 (2014)ADSCrossRefPubMed Chen, Y., et al.: Isentropic wave propagation in a viscous fluid. J. Acoust. Soc. Am. 136(4), 1692–1701 (2014)ADSCrossRefPubMed
28.
go back to reference M. Manninen et al. (1996) On the mixture model for multiphase flow. VTT publication 288. ISSN 1235–0621, Technical Research Centre of Finland. M. Manninen et al. (1996) On the mixture model for multiphase flow. VTT publication 288. ISSN 1235–0621, Technical Research Centre of Finland.
29.
go back to reference Fonty, T., et al.: Mixture model for two-phase flows with high density ratios. Int. J. Multiphase Flow 111, 158–174 (2019)MathSciNetCrossRef Fonty, T., et al.: Mixture model for two-phase flows with high density ratios. Int. J. Multiphase Flow 111, 158–174 (2019)MathSciNetCrossRef
30.
go back to reference Hussey, R.G., Vujacic, P.: Damping corrections for oscillating cylinder and sphere. Phys. Fluids 10, 96–97 (1967)ADSCrossRef Hussey, R.G., Vujacic, P.: Damping corrections for oscillating cylinder and sphere. Phys. Fluids 10, 96–97 (1967)ADSCrossRef
31.
go back to reference Karanfilian, S.K., Kotas, T.J.: Drag on a sphere in unsteady motion in a liquid at rest. J. Fluid Mech. 87, 85–96 (1978)ADSCrossRef Karanfilian, S.K., Kotas, T.J.: Drag on a sphere in unsteady motion in a liquid at rest. J. Fluid Mech. 87, 85–96 (1978)ADSCrossRef
32.
go back to reference Gupta, V.K., Shanker, G., Sharma, N.K.: Experiment on fluid drag and viscosity with an oscillating sphere. Am. J. Phys. 54, p619 (1986)ADSCrossRef Gupta, V.K., Shanker, G., Sharma, N.K.: Experiment on fluid drag and viscosity with an oscillating sphere. Am. J. Phys. 54, p619 (1986)ADSCrossRef
33.
go back to reference Alexander, P., Indelicato, E.: A semi-empirical approach to a viscously damped oscillating sphere. Eur. J. Phys. 25, 1–10 (2005)CrossRef Alexander, P., Indelicato, E.: A semi-empirical approach to a viscously damped oscillating sphere. Eur. J. Phys. 25, 1–10 (2005)CrossRef
34.
go back to reference Dolfo, G., Vigué, J., Lhuillier, D.: Experimental test of unsteady Stokes’ drag force on a sphere. Exp. Fluids 61, 97 (2020)CrossRef Dolfo, G., Vigué, J., Lhuillier, D.: Experimental test of unsteady Stokes’ drag force on a sphere. Exp. Fluids 61, 97 (2020)CrossRef
35.
go back to reference Ibarias, M., et al.: Phononic crystal as a homogeneous viscous metamaterial. Phys. Rev. Res. 2, 022053(R) (2020)CrossRef Ibarias, M., et al.: Phononic crystal as a homogeneous viscous metamaterial. Phys. Rev. Res. 2, 022053(R) (2020)CrossRef
36.
go back to reference Roscoe, R.: The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys. 3, p267 (1952)ADSCrossRef Roscoe, R.: The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys. 3, p267 (1952)ADSCrossRef
37.
go back to reference Lejeune, A.M., Richet, P.: Rheology of crystal-bearing silicate melts: an experimental study at high viscosity. J. Geophys. Res. 100, p4215 (1995)ADSCrossRef Lejeune, A.M., Richet, P.: Rheology of crystal-bearing silicate melts: an experimental study at high viscosity. J. Geophys. Res. 100, p4215 (1995)ADSCrossRef
38.
go back to reference Brouwers, H.J.H.: Viscosity of a concentrated suspension of rigid monosized particles. Phy. Rev. E 81, 051402 (2010)ADSCrossRef Brouwers, H.J.H.: Viscosity of a concentrated suspension of rigid monosized particles. Phy. Rev. E 81, 051402 (2010)ADSCrossRef
39.
go back to reference Liu, Z., et al.: Viscosity of heterogeneous silicate melts: a review. Metall. Mater. Trans. 49B, 2469 (2018)ADSCrossRef Liu, Z., et al.: Viscosity of heterogeneous silicate melts: a review. Metall. Mater. Trans. 49B, 2469 (2018)ADSCrossRef
40.
go back to reference Solyaev, Y.O., et al.: Generalized Einstein’s and Brinkman’s solutions for the effective viscosity of nanofluids. J. Appl. Phys. 128, 035102 (2020)ADSCrossRef Solyaev, Y.O., et al.: Generalized Einstein’s and Brinkman’s solutions for the effective viscosity of nanofluids. J. Appl. Phys. 128, 035102 (2020)ADSCrossRef
Metadata
Title
A direct method for acoustic waves in hard particle–fluid suspensions
Author
C. Q. Ru
Publication date
24-11-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 2/2024
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03795-w

Other articles of this Issue 2/2024

Acta Mechanica 2/2024 Go to the issue

Premium Partners