Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2016

Open Access 01-12-2016 | Research

A discrete Hilbert-type inequality in the whole plane

Authors: Dongmei Xin, Bicheng Yang, Qiang Chen

Published in: Journal of Inequalities and Applications | Issue 1/2016

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

By the use of weight coefficients and technique of real analysis, a discrete Hilbert-type inequality in the whole plane with multi-parameters and a best possible constant factor is given. The equivalent forms, the operator expressions, and a few particular inequalities are considered.
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. DX and QC participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

1 Introduction

Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(a_{m},b_{n}\geq 0\), \(a=\{a_{m}\}_{m=1}^{\infty}\in l^{p}\), \(b=\{b_{n}\}_{n=1}^{\infty}\in l^{q}\), \(\Vert a\Vert _{p}=(\sum_{m=1}^{\infty}a_{m}^{p})^{\frac{1}{p}}>0\), \(\Vert b\Vert _{q}>0\). We have the following well-known Hardy-Hilbert inequality:
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\frac{\pi}{p})}\Vert a \Vert _{p}\Vert b\Vert _{q}, $$
(1)
where the constant factor \(\frac{\pi}{\sin(\pi/p)}\) is the best possible (cf. [1]). Also we have the following Hilbert-type inequality:
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{\max\{m,n\}}< pq\Vert a\Vert _{p}\Vert b\Vert _{q}, $$
(2)
with the best possible constant factor pq (cf. [2]). Inequalities (1) and (2) are important in analysis and its applications (cf. [24]).
In 2011, Yang gave an extension of (2) as follows (cf. [5]): If \(0<\lambda_{1},\lambda_{2}\leq1\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(a_{m},b_{n}\geq0\), \(0<\Vert a\Vert _{p,\varphi}=\{\sum_{m=1}^{\infty }m^{p(1-\lambda_{1})-1}a_{m}^{p}\}^{\frac{1}{p}}<\infty \), \(0<\Vert b\Vert _{q,\psi}=\{\sum_{n=1}^{\infty}n^{q(1-\lambda_{2})-1} b_{n}^{q}\}^{\frac{1}{q}}<\infty\), then
$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{(\max \{m,n\})^{\lambda}}< \frac{\lambda}{\lambda_{1}\lambda_{2}}\Vert a\Vert _{p,\varphi}\Vert b\Vert _{q,\psi}, $$
(3)
where the constant factor \(\frac{\lambda}{\lambda_{1}\lambda_{2}}\) is the best possible.
For \(\lambda=1\), \(\lambda_{1}=\frac{1}{q}\), \(\lambda_{2}=\frac{1}{p}\), inequality (3) reduces to (2). Some other results relate to (1)-(3) are provided by [623].
In this paper, by the use of weight coefficients and the technique of real analysis, an extension of (3) in the whole plane is given as follows: For \(0<\lambda_{1},\lambda_{2}\leq1\), \(\lambda_{1}+\lambda _{2}=\lambda\), \(a_{m},b_{n}\geq0\), \(0<\sum_{|m|=1}^{\infty }|m|^{p(1-\lambda _{1})-1}a_{m}^{p}<\infty\), \(0<\sum_{|n|=1}^{\infty}|n|^{q(1-\lambda _{2})-1}b_{n}^{q}<\infty\), we have
$$\begin{aligned} &\sum_{|n|=1}^{\infty}\sum _{|m|=1}^{\infty}\frac{1}{(\max \{|m|,|n|\})^{\lambda}}a_{m}b_{n} \\ &\quad< \frac{2\lambda}{\lambda_{1}\lambda_{2}} \Biggl[ \sum_{|m|=1}^{\infty }|m|^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{|n|=1}^{\infty}|n|^{q(1-\lambda_{2})-1}b_{n}^{q} \Biggr] ^{\frac {1}{q}}. \end{aligned}$$
(4)
Moreover, a generation of (4) with multi-parameters and a best possible constant factor is proved. The equivalent forms, the operator expressions and a few particular inequalities are also considered.

2 Some lemmas

In the following, we agree that \(\mathbf{N}=\{1,2,\ldots\}\), \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\alpha,\beta\in(0,\pi)\), \(\lambda _{1},\lambda _{2}>-\eta\), \(\lambda_{1}+\lambda_{2}=\lambda\), and for \(|x|,|y|>0\),
$$ k(x,y):=\frac{(\min\{|x|+x\cos\alpha,|y|+y\cos\beta\})^{\eta }}{(\max \{|x|+x\cos\alpha,|y|+y\cos\beta\})^{\lambda+\eta}}. $$
(5)
Lemma 1
(cf. [24])
Suppose that \(g(t)\) (>0) is decreasing in \(\mathbf{R}_{+}\) and strictly decreasing in \([n_{0},\infty)\) (\(n_{0}\in \mathbf{N}\)), satisfying \(\int_{0}^{\infty}g(t)\,dt\in\mathbf{R}_{+}\). We have
$$ \int_{1}^{\infty}g(t)\,dt< \sum _{n=1}^{\infty}g(n)< \int_{0}^{\infty}g(t)\,dt. $$
(6)
Definition 1
Define the following weight coefficients:
$$\begin{aligned}& \omega(\lambda_{2},m) : =\sum _{|n|=1}^{\infty}k(m,n)\frac{(|m|+m\cos \alpha)^{\lambda_{1}}}{(|n|+n\cos\beta)^{1-\lambda_{2}}},\quad |m|\in \mathbf{N}, \end{aligned}$$
(7)
$$\begin{aligned}& \varpi(\lambda_{1},n) : =\sum _{|m|=1}^{\infty}k(m,n)\frac{(|n|+n\cos \beta)^{\lambda_{2}}}{(|m|+m\cos\alpha)^{1-\lambda_{1}}},\quad |n|\in \mathbf{N}, \end{aligned}$$
(8)
where \(\sum_{|j|=1}^{\infty}\cdots=\sum_{j=-1}^{-\infty}\cdots +\sum_{j=1}^{\infty}\cdots\) (\(j=m,n\)).
Lemma 2
If \(\lambda_{2}\leq1-\eta\), then for \(k_{\beta }(\lambda_{1}):=\frac{2(\lambda+2\eta)\csc^{2}\beta}{(\lambda _{1}+\eta )(\lambda_{2}+\eta)}\), we have
$$ k_{\beta}(\lambda_{1}) \bigl(1-\theta( \lambda_{2},m)\bigr)< \omega(\lambda _{2},m)< k_{\beta}( \lambda_{1}),\quad |m|\in\mathbf{N}, $$
(9)
where
$$\begin{aligned} \theta(\lambda_{2},m) :=&\frac{(\lambda_{1}+\eta)(\lambda _{2}+\eta)}{\lambda+2\eta} \int_{0}^{\frac{1+\cos\beta}{|m|+m\cos\alpha}}\frac{ (\min\{1,u\})^{\eta}u^{\lambda_{2}-1}}{(\max\{1,u\})^{\lambda+\eta}}\,du \\ =&O \biggl( \frac{1}{(|m|+m\cos\alpha)^{\eta+\lambda_{2}}} \biggr) \in (0,1),\quad |m|\in\mathbf{N}. \end{aligned}$$
(10)
Proof
For \(|x|>0\), we set
$$\begin{aligned}& k^{(1)}(x,y) := \frac{[\min\{|x|+x\cos\alpha,y(\cos\beta-1)\} ]^{\eta}}{[\max\{|x|+x\cos\alpha,y(\cos\beta-1)\}]^{\lambda+\eta}},\quad y< 0, \\& k^{(2)}(x,y) := \frac{[\min\{|x|+x\cos\alpha,y(1+\cos\beta)\} ]^{\eta}}{[\max\{|x|+x\cos\alpha,y(1+\cos\beta)\}]^{\lambda+\eta}},\quad y>0, \end{aligned}$$
from which we have
$$k^{(1)}(x,-y)=\frac{[\min\{|x|+x\cos\alpha,y(1-\cos\beta)\}]^{\eta }}{[\max\{|x|+x\cos\alpha,y(1-\cos\beta)\}]^{\lambda+\eta}},\quad y>0. $$
We obtain
$$\begin{aligned} \omega(\lambda_{2},m) =&\sum _{n=-1}^{-\infty}k^{(1)}(m,n)\frac{(|m|+m\cos\alpha)^{\lambda_{1}}}{[n(\cos\beta-1)]^{1-\lambda_{2}}} \\ &{}+\sum_{n=1}^{\infty}k^{(2)}(m,n) \frac{(|m|+m\cos\alpha)^{\lambda _{1}}}{[n(1+\cos\beta)]^{1-\lambda_{2}}} \\ =&\frac{(|m|+m\cos\alpha)^{\lambda_{1}}}{(1-\cos\beta)^{1-\lambda _{2}}}\sum_{n=1}^{\infty} \frac{k^{(1)}(m,-n)}{n^{1-\lambda_{2}}} \\ &{}+\frac{(|m|+m\cos\alpha)^{\lambda_{1}}}{(1+\cos\beta)^{1-\lambda _{2}}}\sum_{n=1}^{\infty} \frac{k^{(2)}(m,n)}{n^{1-\lambda_{2}}}. \end{aligned}$$
(11)
For fixed \(|m|\in\mathbf{N}\), \(\lambda_{2}\leq1-\eta\), we find that
$$\begin{aligned} \frac{k^{(1)}(m,-y)}{y^{1-\lambda_{2}}} =&\frac{[\min\{|m|+m\cos \alpha ,y(1-\cos\beta)\}]^{\eta}}{y^{1-\lambda_{2}}[\max\{|m|+m\cos\alpha ,y(1-\cos\beta)\}]^{\lambda+\eta}} \\ =& \left\{ \textstyle\begin{array}{@{}l@{\quad}l@{}} \frac{(1-\cos\beta)^{\eta}}{(|m|+m\cos\alpha)^{\lambda +\eta}}\frac{1}{y^{1-(\lambda_{2}+\eta)}},&0< y< \frac{|m|+m\cos\alpha}{1-\cos \beta} , \\ \frac{(|m|+m\cos\alpha)^{\eta}}{(1-\cos\beta)^{\lambda +\eta}}\frac{1}{y^{1+(\lambda_{1}+\eta)}},&y\geq\frac{|m|+m\cos\alpha }{1-\cos \beta}\end{array}\displaystyle \right . \end{aligned}$$
is decreasing for \(y>0\) and strictly decreasing for \(y\geq\frac {|m|+m\cos \alpha}{1-\cos\beta}\). Under the same assumptions, it is evident that
$$\begin{aligned} \frac{k^{(2)}(m,y)}{y^{1-\lambda_{2}}} =&\frac{[\min\{|m|+m\cos \alpha ,y(1+\cos\beta)\}]^{\eta}}{y^{1-\lambda_{2}}[\max\{|m|+m\cos\alpha ,y(1+\cos\beta)\}]^{\lambda+\eta}} \\ =& \left\{ \textstyle\begin{array}{@{}l@{\quad}l@{}} \frac{(1+\cos\beta)^{\eta}}{(|m|+m\cos\alpha)^{\lambda +\eta}}\frac{1}{y^{1-(\lambda_{2}+\eta)}},&0< y< \frac{|m|+m\cos\alpha}{1+\cos \beta} , \\ \frac{(|m|+m\cos\alpha)^{\eta}}{(1+\cos\beta)^{\lambda +\eta}}\frac{1}{y^{1+(\lambda_{1}+\eta)}},&y\geq\frac{|m|+m\cos\alpha }{1+\cos \beta}\end{array}\displaystyle \right . \end{aligned}$$
is decreasing for \(y>0\) and strictly decreasing for \(y\geq\frac {|m|+m\cos \alpha}{1+\cos\beta}\).
By (11) and (6), we have
$$\begin{aligned} \omega(\lambda_{2},m) < &\frac{(|m|+m\cos\alpha)^{\lambda _{1}}}{(1-\cos \beta)^{1-\lambda_{2}}} \int_{0}^{\infty}\frac {k^{(1)}(m,-y)}{y^{1-\lambda _{2}}}\,dy \\ &{}+\frac{(|m|+m\cos\alpha)^{\lambda_{1}}}{(1+\cos\beta)^{1-\lambda _{2}}} \int_{0}^{\infty}\frac{k^{(2)}(m,y)}{y^{1-\lambda_{2}}}\,dy. \end{aligned}$$
Setting \(u=\frac{y(1-\cos\beta)}{|m|+m\cos\alpha}(\frac{y(1+\cos \beta)}{|m|+m\cos\alpha})\) in the above first (second) integral, by simplifications, we find
$$\begin{aligned} \omega(\lambda_{2},m) < & \biggl(\frac{1}{1-\cos\beta}+ \frac{1}{1+\cos \beta} \biggr) \int_{0}^{\infty}\frac{(\min\{1,u\})^{\eta}u^{\lambda _{2}-1}}{(\max\{1,u\})^{\lambda+\eta}}\,du \\ =&2\csc^{2}\beta \biggl( \int_{0}^{1}u^{\eta+\lambda _{2}-1}\,du+ \int_{1}^{\infty}\frac{u^{\lambda_{2}-1}}{u^{\lambda+\eta }}\,du \biggr) \\ =&\frac{2(\lambda+2\eta)\csc^{2}\beta}{(\lambda_{1}+\eta)(\lambda _{2}+\eta)}=k_{\beta}(\lambda_{1}). \end{aligned}$$
Still by (11) and (6), we have
$$\begin{aligned} \omega(\lambda_{2},m) >&\frac{(|m|+m\cos\alpha)^{\lambda _{1}}}{(1-\cos \beta)^{1-\lambda_{2}}} \int_{1}^{\infty}\frac {k^{(1)}(m,-y)}{y^{1-\lambda _{2}}}\,dy \\ &{}+\frac{(|m|+m\cos\alpha)^{\lambda_{1}}}{(1+\cos\beta)^{1-\lambda _{2}}} \int_{1}^{\infty}\frac{k^{(2)}(m,y)}{y^{1-\lambda_{2}}}\,dy \\ \geq&\frac{1}{1-\cos\beta} \int_{\frac{1+\cos\beta}{|m|+m\cos \alpha}}^{\infty}\frac{(\min\{1,u\})^{\eta}u^{\lambda_{2}-1}}{(\max \{1,u\})^{\lambda+\eta}}\,du \\ &{}+\frac{1}{1+\cos\beta} \int_{\frac{1+\cos\beta}{|m|+m\cos\alpha}}^{\infty}\frac{(\min\{1,u\})^{\eta}u^{\lambda_{2}-1}}{(\max \{1,u\})^{\lambda+\eta}}\,du \\ =&k_{\beta}(\lambda_{1}) \bigl(1-\theta( \lambda_{2},m)\bigr)>0. \end{aligned}$$
We obtain for \(|m|+m\cos\alpha\geq1+\cos\beta\)
$$\begin{aligned} 0 < &\theta(\lambda_{2},m)=\frac{(\lambda_{1}+\eta)(\lambda _{2}+\eta)}{\lambda+2\eta} \int_{0}^{\frac{1+\cos\beta}{|m|+m\cos\alpha}}\frac{ (\min\{1,u\})^{\eta}u^{\lambda_{2}-1}}{(\max\{1,u\})^{\lambda+\eta}}\,du \\ =&\frac{(\lambda_{1}+\eta)(\lambda_{2}+\eta)}{\lambda+2\eta} \int _{0}^{\frac{1+\cos\beta}{|m|+m\cos\alpha}}u^{\eta+\lambda_{2}-1}\,du \\ =&\frac{\lambda_{1}+\eta}{\lambda+2\eta} \biggl( \frac{1+\cos\beta }{|m|+m\cos\alpha} \biggr) ^{\eta+\lambda_{2}}. \end{aligned}$$
Then we have (9) and (10). □
In the same way, we have the following.
Lemma 3
If \(\lambda_{1}\leq1-\eta\), then for \(k_{\alpha }(\lambda_{1})=\frac{2(\lambda+2\eta)\csc^{2}\alpha}{(\lambda _{1}+\eta )(\lambda_{2}+\eta)}\), we have
$$ k_{\alpha}(\lambda_{1}) \bigl(1-\vartheta( \lambda_{1},n)\bigr)< \varpi(\lambda _{1},n)< k_{\alpha}( \lambda_{1}),\quad |n|\in\mathbf{N}, $$
(12)
where
$$\begin{aligned} \vartheta(\lambda_{1},n) :=&\frac{(\lambda_{1}+\eta)(\lambda _{2}+\eta)}{\lambda+2\eta} \int_{0}^{\frac{1+\cos\alpha}{|n|+n\cos\beta }}\frac{(\min\{1,u\})^{\eta}u^{\lambda_{1}-1}}{(\max\{1,u\})^{\lambda+\eta}}\,du \\ =&O \biggl( \frac{1}{(|n|+n\cos\beta)^{\eta+\lambda_{1}}} \biggr) \in (0,1),\quad |n|\in\mathbf{N}. \end{aligned}$$
(13)
Lemma 4
If \(\theta\in(0,\pi)\), then for \(\rho>0\), \(H_{\rho }(\theta):=\sum_{|n|=1}^{\infty}\frac{1}{(|n|+n\cos\theta)^{1+\rho}}\), we have
$$ H_{\rho}(\theta)= \biggl[ \frac{1}{(1+\cos\theta)^{1+\rho}}+ \frac{1}{ (1-\cos\theta)^{1+\rho}} \biggr] \frac{1+\rho O(1)}{\rho} \quad\bigl(\rho \rightarrow0^{+}\bigr). $$
(14)
Proof
We have
$$\begin{aligned} H_{\rho}(\theta) =&\sum_{n=-1}^{-\infty} \frac{1}{[n(\cos\theta -1)]^{1+\rho}}+\sum_{n=1}^{\infty} \frac{1}{[n(\cos\theta +1)]^{1+\rho}} \\ =& \biggl[ \frac{1}{(1-\cos\theta)^{1+\rho}}+\frac{1}{(1+\cos\theta )^{1+\rho}} \biggr] \sum _{n=1}^{\infty}\frac{1}{n^{1+\rho}}. \end{aligned}$$
By (6), we find
$$\begin{aligned}& \begin{aligned} H_{\rho}(\theta) &= \biggl[ \frac{1}{(1-\cos\theta)^{1+\rho}}+ \frac {1}{(1+\cos\theta)^{1+\rho}} \biggr] \Biggl( 1+\sum_{n=2}^{\infty} \frac {1}{n^{1+\rho}} \Biggr) \\ &< \biggl[ \frac{1}{(1-\cos\theta)^{1+\rho}}+\frac{1}{(1+\cos\theta )^{1+\rho}} \biggr] \biggl( 1+ \int_{1}^{\infty}\frac{dy}{y^{1+\rho }} \biggr) \\ &=\frac{1}{\rho} \biggl[ \frac{1}{(1-\cos\theta)^{1+\rho}}+\frac{1}{(1+\cos\theta)^{1+\rho}} \biggr] (1+ \rho), \end{aligned} \\& \begin{aligned} H_{\rho}(\theta) &> \biggl[ \frac{1}{(1-\cos\theta)^{1+\rho}}+\frac {1}{(1+\cos\theta)^{1+\rho}} \biggr] \int_{1}^{\infty}\frac {dy}{y^{1+\rho}} \\ &= \frac{1}{\rho} \biggl[ \frac{1}{(1-\cos\theta)^{1+\rho}}+\frac{1}{(1+\cos\theta)^{1+\rho}} \biggr] . \end{aligned} \end{aligned}$$
Hence we have (14). □

3 Main results

Theorem 1
If \(\lambda_{1},\lambda_{2}\leq1-\eta\), \(a_{m},b_{n}\geq0\) (\(|m|,|n|\in\mathbf{N}\)),
$$\begin{aligned} &0 < \sum_{|m|=1}^{\infty}\bigl(|m|+m\cos \alpha\bigr)^{p(1-\lambda _{1})-1}a_{m}^{p}< \infty, \\ &0 < \sum_{|n|=1}^{\infty}\bigl(|n|+n\cos \beta\bigr)^{q(1-\lambda _{2})-1}b_{n}^{q}< \infty, \\ &k_{\alpha,\beta}(\lambda_{1}):=k_{\beta}^{\frac{1}{p}}( \lambda _{1})k_{\alpha}^{\frac{1}{q}}(\lambda_{1})= \frac{2(\lambda+2\eta )\csc^{\frac{2}{p}}\beta\csc^{\frac{2}{q}}\alpha}{(\lambda_{1}+\eta )(\lambda _{2}+\eta)}, \end{aligned}$$
(15)
then we have the following equivalent inequalities:
$$\begin{aligned} &\begin{aligned}[b] I :={}&\sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty}k(m,n)a_{m}b_{n} \\ < {}&k_{\alpha,\beta}(\lambda_{1}) \Biggl[ \sum _{|m|=1}^{\infty }\bigl(|m|+m\cos \alpha\bigr)^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum_{|n|=1}^{\infty}\bigl(|n|+n\cos \beta\bigr)^{q(1-\lambda _{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(16)
$$\begin{aligned} &\begin{aligned}[b] J :={}& \Biggl[ \sum _{|n|=1}^{\infty}\bigl(|n|+n\cos\beta\bigr)^{p\lambda _{2}-1} \Biggl( \sum _{|m|=1}^{\infty}k(m,n)a_{m} \Biggr) ^{p} \Biggr] ^{\frac{1}{p}} \\ < {}&k_{\alpha,\beta}(\lambda_{1}) \Biggl[ \sum _{|m|=1}^{\infty }\bigl(|m|+m\cos \alpha\bigr)^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}}. \end{aligned} \end{aligned}$$
(17)
In particular, for \(\alpha=\beta=\frac{\pi}{2}\), we have the following equivalent inequalities:
$$\begin{aligned} &\begin{aligned}[b] &\sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty}\frac{(\min\{|m|,|n|\} )^{\eta}}{(\max\{|m|,|n|\})^{\lambda+\eta}}a_{m}b_{n} \\ &\quad< \frac{2(\lambda+2\eta)}{(\lambda_{1}+\eta)(\lambda_{2}+\eta )} \Biggl[ \sum_{|m|=1}^{\infty}|m|^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac {1}{p}} \Biggl[ \sum_{|n|=1}^{\infty}|n|^{q(1-\lambda_{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(18)
$$\begin{aligned} &\begin{aligned}[b] & \Biggl[ \sum_{|n|=1}^{\infty}|n|^{p\lambda_{2}-1} \Biggl( \sum_{|m|=1}^{\infty}\frac{(\min\{|m|,|n|\})^{\eta}}{(\max \{|m|,|n|\})^{\lambda+\eta}}a_{m} \Biggr) ^{p} \Biggr] ^{\frac{1}{p}} \\ &\quad< \frac{2(\lambda+2\eta)}{(\lambda_{1}+\eta)(\lambda_{2}+\eta )} \Biggl[ \sum_{|m|=1}^{\infty}|m|^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac {1}{p}}. \end{aligned} \end{aligned}$$
(19)
Proof
By Hölder’s inequality (cf. [25]) and (8), we have
$$\begin{aligned} \Biggl( \sum_{|m|=1}^{\infty}k(m,n)a_{m} \Biggr) ^{p} =& \Biggl[ \sum_{|m|=1}^{\infty}k(m,n) \frac{(|m|+m\cos\alpha )^{(1-\lambda _{1})/q}a_{m}}{(|n|+n\cos\beta)^{(1-\lambda_{2})/p}}\frac{(|n|+n\cos \beta)^{(1-\lambda_{2})/p}}{(|m|+m\cos\alpha)^{(1-\lambda_{1})/q}} \Biggr] ^{p} \\ \leq& \sum_{|m|=1}^{\infty}k(m,n) \frac{(|m|+m\cos\alpha)^{(1-\lambda _{1})p/q}}{(|n|+n\cos\beta)^{1-\lambda_{2}}}a_{m}^{p} \\ &{} \times \Biggl[ \sum_{|m|=1}^{\infty}k(m,n) \frac{(|n|+n\cos\beta )^{(1-\lambda_{2})q/p}}{(|m|+m\cos\alpha)^{1-\lambda_{1}}} \Biggr] ^{p-1} \\ =&\frac{(\varpi(\lambda_{1},n))^{p-1}}{(|n|+n\cos\beta)^{p\lambda _{2}-1}}\sum_{|m|=1}^{\infty}k(m,n) \frac{(|m|+m\cos\alpha)^{(1-\lambda _{1})p/q}}{(|n|+n\cos\beta)^{1-\lambda_{2}}}a_{m}^{p}. \end{aligned}$$
By (12), we have
$$\begin{aligned} J < &k_{\alpha}^{\frac{1}{q}}(\lambda_{1}) \Biggl[ \sum_{|n|=1}^{\infty }\sum _{|m|=1}^{\infty}k(m,n)\frac{(|m|+m\cos\alpha)^{(1-\lambda _{1})(p-1)}}{(|n|+n\cos\beta)^{1-\lambda_{2}}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&k_{\alpha}^{\frac{1}{q}}(\lambda_{1}) \Biggl[ \sum _{|m|=1}^{\infty }\sum_{|n|=1}^{\infty}k(m,n) \frac{(|m|+m\cos\alpha)^{(1-\lambda _{1})(p-1)}}{(|n|+n\cos\beta)^{1-\lambda_{2}}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&k_{\alpha}^{\frac{1}{q}}(\lambda_{1}) \Biggl[ \sum _{|m|=1}^{\infty }\omega (\lambda_{2},m) \bigl(|m|+m\cos \alpha\bigr)^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}}. \end{aligned}$$
(20)
By (9), we have (17).
By Hölder’s inequality (cf. [25]), we have
$$\begin{aligned} I =&\sum_{|n|=1}^{\infty} \Biggl[ \bigl(|n|+n\cos\beta\bigr)^{\lambda_{2}-\frac {1}{p}}\sum_{|m|=1}^{\infty}k(m,n)a_{m} \Biggr] \bigl(|n|+n\cos\beta\bigr)^{\frac {1}{p}-\lambda_{2}}b_{n} \\ \leq&J \Biggl[ \sum_{|n|=1}^{\infty}\bigl(|n|+n\cos \beta\bigr)^{q(1-\lambda _{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(21)
Then by (17), we have (16).
On the other hand, assuming that (16) is valid, we set
$$b_{n}:=\bigl(|n|+n\cos\beta\bigr)^{p\lambda_{2}-1} \Biggl( \sum _{|m|=1}^{\infty }k(m,n)a_{m} \Biggr) ^{p-1},\quad |n|\in\mathbf{N}. $$
Then it follows that
$$J= \Biggl[ \sum_{|n|=1}^{\infty}\bigl(|n|+n\cos \beta\bigr)^{q(1-\lambda _{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{p}}. $$
By (20), we find \(J<\infty\). If \(J=0\), then (17) is evidently valid; if \(J>0\), then by (16), we have
$$\begin{aligned}& \begin{aligned} 0 < {}&\sum_{|n|=1}^{\infty}\bigl(|n|+n \cos\beta\bigr)^{q(1-\lambda _{2})-1}b_{n}^{q}=J^{p}=I \\ < {}&k_{\alpha,\beta}(\lambda_{1}) \Biggl[ \sum _{|m|=1}^{\infty }\bigl(|m|+m\cos \alpha\bigr)^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum_{|n|=1}^{\infty}\bigl(|n|+n\cos \beta\bigr)^{q(1-\lambda _{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned} \\& \begin{aligned} J ={}& \Biggl[ \sum_{|n|=1}^{\infty}\bigl(|n|+n \cos\beta\bigr)^{q(1-\lambda _{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{p}} \\ < {}&k_{\alpha,\beta}(\lambda_{1}) \Biggl[ \sum _{|m|=1}^{\infty }\bigl(|m|+m\cos \alpha\bigr)^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}}, \end{aligned} \end{aligned}$$
namely, (17) follows, which is equivalent to (16). □
Theorem 2
As regards the assumptions of Theorem  1, the constant factor \(k_{\alpha,\beta}(\lambda_{1})\) in (16) and (17) is the best possible.
Proof
For any \(\varepsilon\in(0,q(\lambda_{2}+\eta))\), we set \(\widetilde{\lambda}_{1}=\lambda_{1}+\frac{\varepsilon}{q}\) (\(>-\eta\)), \(\widetilde{\lambda}_{2}=\lambda_{2}-\frac{\varepsilon}{q}\) (\(\in(-\eta ,1-\eta)\)), and
$$\begin{aligned}& \widetilde{a}_{m} : =\bigl(|m|+m\cos\alpha\bigr)^{(\lambda_{1}-\frac {\varepsilon}{p})-1}=\bigl(|m|+m\cos \alpha\bigr)^{\widetilde{\lambda}_{1}-\varepsilon -1}\quad\bigl(|m|\in \mathbf{N}\bigr), \\& \widetilde{b}_{n} : =\bigl(|n|+n\cos\beta\bigr)^{(\lambda_{2}-\frac {\varepsilon}{q})-1}=\bigl(|n|+n\cos \beta\bigr)^{\widetilde{\lambda}_{2}-1}\quad\bigl(|n|\in\mathbf{N}\bigr). \end{aligned}$$
Then by (14) and (9), we find
$$\begin{aligned}& \begin{aligned} \widetilde{I}_{1} :={}& \Biggl[ \sum _{|m|=1}^{\infty}\bigl(|m|+m\cos\alpha \bigr)^{p(1-\lambda_{1})-1} \widetilde{a}_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum_{|n|=1}^{\infty}\bigl(|n|+n\cos \beta\bigr)^{q(1-\lambda _{2})-1}\widetilde{b}_{n}^{q} \Biggr] ^{\frac{1}{q}} \\ ={}& \Biggl[ \sum_{|m|=1}^{\infty} \frac{1}{(|m|+m\cos\alpha )^{1+\varepsilon}} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum _{|n|=1}^{\infty}\frac{1}{(|n|+n\cos \beta)^{1+\varepsilon}} \Biggr] ^{\frac{1}{q}} \\ ={}&\frac{1}{\varepsilon} \biggl[ \frac{1}{(1+\cos\alpha )^{1+\varepsilon}}+\frac{1}{(1-\cos\alpha)^{1+\varepsilon}} \biggr] ^{\frac{1}{p}}\bigl(1+\varepsilon O_{1}(1)\bigr)^{\frac{1}{p}} \\ &{}\times \biggl[ \frac{1}{(1+\cos\beta)^{1+\varepsilon}}+\frac {1}{(1-\cos \beta)^{1+\varepsilon}} \biggr] ^{\frac{1}{q}} \bigl(1+\varepsilon O_{2}(1)\bigr)^{\frac{1}{q}}, \end{aligned} \\& \begin{aligned} \widetilde{I} :={}&\sum_{|n|=1}^{\infty} \sum_{|m|=1}^{\infty}k(m,n)\widetilde{a}_{m}\widetilde{b}_{n} \\ ={}&\sum_{|m|=1}^{\infty}\sum _{|m|=1}^{\infty}k(m,n)\frac{(|m|+m\cos \alpha )^{\widetilde{\lambda}_{1}-\varepsilon-1}}{(|n|+n\cos\beta)^{1-\widetilde{\lambda}_{2}}} \\ ={}&\sum_{|m|=1}^{\infty}\frac{\omega(\widetilde{\lambda}_{2},m)}{(|m|+m\cos\alpha)^{\varepsilon+1}}\geq k_{\beta}(\widetilde{\lambda }_{1})\sum _{|m|=1}^{\infty}\frac{1-\theta(\widetilde{\lambda}_{2},m)}{ (|m|+m\cos\alpha)^{\varepsilon+1}} \\ ={}&k_{\beta}(\widetilde{\lambda}_{1}) \Biggl[ \sum _{|m|=1}^{\infty }\frac{1}{(|m|+m\cos\alpha)^{\varepsilon+1}}-\sum _{|m|=1}^{\infty}\frac{1}{O((|m|+m\cos\alpha)^{(\frac{\varepsilon}{p}+\lambda_{2}+\eta)+1})} \Biggr] \\ ={}&\frac{k_{\beta}(\widetilde{\lambda}_{1})}{\varepsilon}\biggl\{ \biggl[\frac{1}{ (1+\cos\alpha)^{1+\varepsilon}}+\frac{1}{(1-\cos\alpha )^{1+\varepsilon}} \biggr]\bigl(1+\varepsilon O_{1}(1)\bigr)-\varepsilon O(1)\biggr\} . \end{aligned} \end{aligned}$$
If there exists a constant \(k\leq k_{\alpha,\beta}(\lambda_{1})\), such that (16) is valid when replacing \(k_{\alpha,\beta}(\lambda_{1})\) by k, then in particular, we have \(\varepsilon\widetilde {I}<\varepsilon k\widetilde{I}_{1}\), namely,
$$\begin{aligned}& k_{\beta}(\widetilde{\lambda}_{1})\biggl\{ \biggl[ \frac{1}{(1+\cos\alpha )^{1+\varepsilon}}+\frac{1}{(1-\cos\alpha)^{1+\varepsilon}}\biggr]\bigl(1+\varepsilon O_{1}(1)\bigr)-\varepsilon O(1)\biggr\} \\& \quad < k \biggl[ \frac{1}{(1+\cos\alpha)^{1+\varepsilon}}+\frac{1}{(1-\cos \alpha)^{1+\varepsilon}} \biggr] ^{\frac{1}{p}} \bigl(1+\varepsilon O_{1}(1)\bigr)^{\frac{1}{p}} \\& \qquad{} \times \biggl[ \frac{1}{(1+\cos\beta)^{1+\varepsilon}}+\frac {1}{(1-\cos \beta)^{1+\varepsilon}} \biggr] ^{\frac{1}{q}}\bigl(1+\varepsilon O_{2}(1)\bigr)^{\frac{1}{q}}. \end{aligned}$$
It follows that
$$\frac{4(\lambda+2\eta)}{(\lambda_{1}+\eta)(\lambda_{2}+\eta)}\csc ^{2}\beta\csc^{2}\alpha\leq2k \csc^{\frac{2}{p}}\alpha\csc^{\frac {2}{q}}\beta \quad\bigl( \varepsilon\rightarrow0^{+}\bigr), $$
namely,
$$k_{\alpha,\beta}(\lambda_{1})=\frac{2(\lambda+2\eta)\csc^{\frac {2}{p}}\beta\csc^{\frac{2}{q}}\alpha}{(\lambda_{1}+\eta)(\lambda _{2}+\eta)}\leq k. $$
Hence, \(k=k_{\alpha,\beta}(\lambda_{1})\) is the best possible constant factor of (16).
The constant factor \(k_{\alpha,\beta}(\lambda_{1})\) in (17) is still the best possible. Otherwise, we would reach a contradiction by (21) that the constant factor in (16) is not the best possible. □

4 Operator expressions

We set functions \(\Phi(m)\) and \(\Psi(n)\) as follows:
$$\begin{aligned}& \Phi(m) : =\bigl(|m|+m\cos\alpha\bigr)^{p(1-\lambda_{1})-1} \quad\bigl(|m|\in\mathbf {N}\bigr), \\& \Psi(n) : =\bigl(|n|+n\cos\beta\bigr)^{q(1-\lambda_{2})-1} \quad\bigl(|n|\in\mathbf{N}\bigr), \end{aligned}$$
from which we have
$$\Psi^{1-p}(n)=\bigl(|n|+n\cos\beta\bigr)^{p\lambda_{2}-1} \quad\bigl(|n|\in\mathbf{N}\bigr). $$
We also set the following weight normed spaces:
$$\begin{aligned}& l_{p,\Phi} : =\Biggl\{ a=\{a_{m}\}_{|m|=1}^{\infty}; \Vert a\Vert _{p,\Phi}= \Biggl\{ \sum_{|m|=1}^{\infty} \Phi(m)|a_{m}|^{p}\Biggr\} ^{\frac{1}{p}}< \infty \Biggr\} , \\& l_{q,\Psi} : =\Biggl\{ b=\{b_{n}\}_{|n|=1}^{\infty}; \Vert b\Vert _{q,\Psi}= \Biggl\{ \sum_{|n|=1}^{\infty} \Psi(n)|b_{n}|^{q}\Biggr\} ^{\frac{1}{q}}< \infty \Biggr\} , \\& l_{p,\Psi^{1-p}} : =\Biggl\{ c=\{c_{n}\}_{|n|=1}^{\infty}; \Vert c\Vert _{p,\Psi ^{1-p}}= \Biggl\{ \sum_{|n|=1}^{\infty} \Psi^{1-p}(n)|c_{n}|^{p}\Biggr\} ^{\frac {1}{p}}< \infty \Biggr\} . \end{aligned}$$
Then for \(a=\{a_{m}\}_{|m|=1}^{\infty}\in l_{p,\Phi }\), \(c=\{c_{n}\}_{|n|=1}^{\infty}\), \(c_{n}=\sum_{|m|=1}^{\infty }k(m,n)a_{m}\), in view of (17), we have \(\Vert c\Vert _{p,\Psi^{1-p}}< k_{\alpha,\beta }(\lambda_{1})\Vert a\Vert _{p,\Phi}<\infty\), namely, \(c\in l_{p,\Psi^{1-p}}\).
Definition 2
Define a Hilbert-type operator \(T:l_{p,\Phi }\rightarrow l_{p,\Psi^{1-p}}\) as follows: For any \(a=\{a_{m}\} _{|m|=1}^{\infty}\in l_{p,\Phi}\), there exists a unique representation \(c=Ta\in l_{p,\Psi^{1-p}}\). We also define the formal inner product of Ta and \(b=\{b_{n}\}_{|n|=1}^{\infty}\in l_{q,\Psi}\) (\(b_{n}\geq0\)) as follows:
$$ (Ta,b):=\sum_{|n|=1}^{\infty}\sum _{|m|=1}^{\infty}k(m,n)a_{m}b_{n}. $$
(22)
Then for \(a_{m}\geq0\) (\(|m|\in\mathbf{N}\)), we may rewrite (16) and (17) as follows:
$$\begin{aligned}& (Ta,b) < k_{\alpha,\beta}(\lambda_{1})\Vert a\Vert _{p,\Phi}\Vert b\Vert _{q,\Psi}, \end{aligned}$$
(23)
$$\begin{aligned}& \Vert Ta\Vert _{p,\Psi^{1-p}} < k_{\alpha,\beta}( \lambda_{1})\Vert a\Vert _{p,\Phi}. \end{aligned}$$
(24)
We define the norm of operator T as follows:
$$ \Vert T\Vert :=\sup_{a\ (\neq\theta)\in l_{p,\Phi}}\frac{\Vert Ta\Vert _{p,\Psi ^{1-p}}}{\Vert a\Vert _{p,\Phi}}. $$
(25)
Then \(\Vert Ta\Vert _{p,\Psi^{1-p}}\leq\Vert T\Vert \cdot\Vert a\Vert _{p,\Phi}\). Since by Theorem 2, the constant factor \(k_{\alpha,\beta}(\lambda_{1})\) in (24) is the best possible, we have
$$ \Vert T\Vert =k_{\alpha,\beta}(\lambda_{1})= \frac{2(\lambda+2\eta)\csc ^{\frac{2}{p}}\beta\csc^{\frac{2}{q}}\alpha}{(\lambda_{1}+\eta)(\lambda _{2}+\eta)}. $$
(26)
Remark 1
(i) For \(\eta=0\), (16) reduces to the following inequality:
$$\begin{aligned} & \sum_{|n|=1}^{\infty}\sum _{|m|=1}^{\infty}\frac{1}{(\max\{|m|+m\cos \alpha,|n|+n\cos\beta\})^{\lambda}}a_{m}b_{n} \\ & \quad< \frac{2\lambda}{\lambda_{1}\lambda_{2}}\csc^{\frac{2}{p}}\beta \csc^{\frac{2}{q}}\alpha \Biggl[ \sum_{|m|=1}^{\infty}\bigl(|m|+m\cos\alpha \bigr)^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ & \qquad{} \times \Biggl[ \sum_{|n|=1}^{\infty}\bigl(|n|+n \cos\beta\bigr)^{q(1-\lambda _{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(27)
In particular, for \(\alpha=\beta=\frac{\pi}{2}\), (27) reduces to (4). If \(a_{-m}=a_{m}\), \(b_{-n}=b_{n}\) (\(m,n\in\mathbf{N}\)), then (4) reduces to (3). Hence, (16) is an extension of (4) with multi-parameters.
(ii) For \(\eta=-\lambda\), \(-1\leq\lambda_{1}\), \(\lambda_{2}<0\) in (16), we have
$$\begin{aligned} & \sum_{|n|=1}^{\infty}\sum _{|m|=1}^{\infty}\frac{1}{(\min\{|m|+m\cos \alpha,|n|+n\cos\beta\})^{\lambda}}a_{m}b_{n} \\ &\quad < \frac{2(-\lambda)}{\lambda_{1}\lambda_{2}}\csc^{\frac{2}{p}}\beta \csc^{\frac{2}{q}}\alpha \Biggl[ \sum_{|m|=1}^{\infty}\bigl(|m|+m\cos\alpha \bigr)^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ & \qquad{} \times \Biggl[ \sum_{|n|=1}^{\infty}\bigl(|n|+n \cos\beta\bigr)^{q(1-\lambda _{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(28)
In particular, for \(\alpha=\beta=\frac{\pi}{2}\), we have
$$\begin{aligned} &\sum_{|n|=1}^{\infty}\sum _{|m|=1}^{\infty}\frac{1}{(\min \{|m|,|n|\})^{\lambda}}a_{m}b_{n} \\ &\quad< \frac{2(-\lambda)}{\lambda_{1}\lambda_{2}} \Biggl[ \sum_{|m|=1}^{\infty }|m|^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{|n|=1}^{\infty}|n|^{q(1-\lambda_{2})-1}b_{n}^{q} \Biggr] ^{\frac {1}{q}}. \end{aligned}$$
(29)
(iii) For \(\lambda=0\) in (16), we have \(\lambda_{2}=-\lambda _{1}\), \(|\lambda_{1}|<\eta\) (\(\eta>0\)) and
$$ \begin{aligned}[b] &\sum_{|n|=1}^{\infty}\sum _{|m|=1}^{\infty} \biggl( \frac{\min\{ |m|+m\cos \alpha,|n|+n\cos\beta\}}{\max\{|m|+m\cos\alpha,|n|+n\cos\beta\}} \biggr) ^{\eta}a_{m}b_{n} \\ &\quad< \frac{4\eta}{\eta^{2}-\lambda_{1}^{2}}\csc^{\frac{2}{p}}\beta \csc^{\frac{2}{q}}\alpha \Biggl[ \sum_{|m|=1}^{\infty}\bigl(|m|+m\cos\alpha \bigr)^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ &\qquad{}\times \Biggl[ \sum_{|n|=1}^{\infty}\bigl(|n|+n \cos\beta\bigr)^{q(1+\lambda _{1})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned} $$
(30)
In particular, for \(\alpha=\beta=\frac{\pi}{2}\), we have
$$\begin{aligned} &\sum_{|n|=1}^{\infty}\sum _{|m|=1}^{\infty} \biggl( \frac{\min\{ |m|,|n|\}}{\max\{|m|,|n|\}} \biggr) ^{\eta}a_{m}b_{n} \\ &\quad< \frac{4\eta}{\eta^{2}-\lambda_{1}^{2}} \Biggl[ \sum_{|m|=1}^{\infty }|m|^{p(1-\lambda_{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{|n|=1}^{\infty}|n|^{q(1-\lambda_{2})-1}b_{n}^{q} \Biggr] ^{\frac {1}{q}}. \end{aligned}$$
(31)
The above particular inequalities are all with the best possible constant factors.

Acknowledgements

This work is supported by the Science and Technology Planning Project of Guangdong Province (No. 2013A011403002), and Appropriative Researching Fund for Professors and Doctors, Guangdong University of Education (No. 2015ARF25).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. DX and QC participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.
Literature
1.
go back to reference Hardy, GH: Note on a theorem of Hilbert concerning series of positive terms. Proc. Lond. Math. Soc. 23(2), 45-46 (1925) Hardy, GH: Note on a theorem of Hilbert concerning series of positive terms. Proc. Lond. Math. Soc. 23(2), 45-46 (1925)
2.
go back to reference Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934) MATH Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934) MATH
3.
go back to reference Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic Publishers, Dordrecht (1991) CrossRefMATH Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic Publishers, Dordrecht (1991) CrossRefMATH
4.
go back to reference Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009) Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
5.
go back to reference Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science Publishers, Sharjah (2011) Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science Publishers, Sharjah (2011)
7.
go back to reference Yang, BC, Debnath, L: On a new generalization of Hardy-Hilbert’s inequality and its applications. J. Math. Anal. Appl. 233, 484-497 (1999) MathSciNetCrossRefMATH Yang, BC, Debnath, L: On a new generalization of Hardy-Hilbert’s inequality and its applications. J. Math. Anal. Appl. 233, 484-497 (1999) MathSciNetCrossRefMATH
10.
go back to reference Yang, BC: On a generalization of Hilbert’s double series theorem. Math. Inequal. Appl. 5(2), 197-204 (2002) MathSciNetMATH Yang, BC: On a generalization of Hilbert’s double series theorem. Math. Inequal. Appl. 5(2), 197-204 (2002) MathSciNetMATH
11.
go back to reference Yang, BC, Rasias, TM: On the way of weight coefficient and research for the Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003) MathSciNet Yang, BC, Rasias, TM: On the way of weight coefficient and research for the Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003) MathSciNet
12.
go back to reference Yang, BC: On new extension of Hilbert’s inequality. Acta Math. Hung. 104(4), 291-299 (2004) CrossRefMATH Yang, BC: On new extension of Hilbert’s inequality. Acta Math. Hung. 104(4), 291-299 (2004) CrossRefMATH
13.
14.
go back to reference Krnić, M, Pečarić, JE: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005) MATH Krnić, M, Pečarić, JE: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005) MATH
15.
go back to reference Yang, BC: A new Hilbert-type inequality. Bull. Belg. Math. Soc. Simon Stevin 13(3), 479-487 (2006) MathSciNetMATH Yang, BC: A new Hilbert-type inequality. Bull. Belg. Math. Soc. Simon Stevin 13(3), 479-487 (2006) MathSciNetMATH
16.
go back to reference Yang, BC: On the norm of a self-adjoint operator and applications to Hilbert’s type inequalities. Bull. Belg. Math. Soc. Simon Stevin 13, 577-584 (2006) MathSciNetMATH Yang, BC: On the norm of a self-adjoint operator and applications to Hilbert’s type inequalities. Bull. Belg. Math. Soc. Simon Stevin 13, 577-584 (2006) MathSciNetMATH
17.
18.
go back to reference Li, YJ, He, B: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1-13 (2007) CrossRefMATH Li, YJ, He, B: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1-13 (2007) CrossRefMATH
19.
go back to reference Yang, BC, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011) MathSciNetMATH Yang, BC, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011) MathSciNetMATH
21.
23.
go back to reference Shi, YP, Yang, BC: A new Hardy-Hilbert-type inequality with multiparameters and a best possible constant factor. J. Inequal. Appl. 2015, 380 (2015) MathSciNetCrossRefMATH Shi, YP, Yang, BC: A new Hardy-Hilbert-type inequality with multiparameters and a best possible constant factor. J. Inequal. Appl. 2015, 380 (2015) MathSciNetCrossRefMATH
25.
go back to reference Kuang, JC: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2004) Kuang, JC: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2004)
Metadata
Title
A discrete Hilbert-type inequality in the whole plane
Authors
Dongmei Xin
Bicheng Yang
Qiang Chen
Publication date
01-12-2016
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2016
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1075-3

Other articles of this Issue 1/2016

Journal of Inequalities and Applications 1/2016 Go to the issue

Premium Partner