Skip to main content
Top
Published in: Journal of Materials Science 12/2016

28-03-2016 | Original Paper

A facile hydrothermal reflux synthesis of Ni(OH)2/GF electrode for supercapacitor application

Authors: A. A. Khaleed, A. Bello, J. K. Dangbegnon, F. U. Ugbo, F. Barzegar, D. Y. Momodu, M. J. Madito, T. M. Masikhwa, O. Olaniyan, N. Manyala

Published in: Journal of Materials Science | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ni(OH)2/graphene foam (GF) electrode was synthesized for electrochemical application by a facile hydrothermal reflux technique. The results obtained from the scanning electron microscopy showed that the Ni(OH)2 spheres successfully coated the entire surface area of the GF. Specific capacitance of 2420 F g−1 at a current density of 1 A g−1 was obtained for Ni(OH)2/GF composite electrode, as well as a capacitance retention of ~93 % after 1000 charge–discharge cycles, demonstrating excellent cycle stability in 6.0 M KOH electrolyte. These results suggest that the composite could be a potential active material for high-performance electrochemical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hu L, Yu Z, Hu Z, Song Y, Zhang F, Zhu H, Jiao S (2015) Facile synthesis of amorphous Ni(OH)2 for high-performance supercapacitors via electrochemical assembly in a reverse micelle. Electrochim Acta 174:273–281CrossRef Hu L, Yu Z, Hu Z, Song Y, Zhang F, Zhu H, Jiao S (2015) Facile synthesis of amorphous Ni(OH)2 for high-performance supercapacitors via electrochemical assembly in a reverse micelle. Electrochim Acta 174:273–281CrossRef
2.
go back to reference Zhu G, Xi C, Shen M, Bao C, Zhu J (2014) Nanosheet-based hierarchical Ni2(CO3)(OH2) microspheres with weak crystallinity for high-performance supercapacitor. ACS Appl Mater Interfaces 6:17208–17214CrossRef Zhu G, Xi C, Shen M, Bao C, Zhu J (2014) Nanosheet-based hierarchical Ni2(CO3)(OH2) microspheres with weak crystallinity for high-performance supercapacitor. ACS Appl Mater Interfaces 6:17208–17214CrossRef
3.
go back to reference Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Liu H, Wang J, Zhang H (2013) One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci 6:2216–2221CrossRef Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Liu H, Wang J, Zhang H (2013) One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci 6:2216–2221CrossRef
4.
go back to reference Liu Y, Wang R, Yan X (2015) Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci Rep 5:11095CrossRef Liu Y, Wang R, Yan X (2015) Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci Rep 5:11095CrossRef
5.
go back to reference Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816 Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816
6.
go back to reference Jiang C, Zhao B, Cheng J, Li J, Zhang H, Tang Z, Yang J (2015) Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochim Acta 173:399–407CrossRef Jiang C, Zhao B, Cheng J, Li J, Zhang H, Tang Z, Yang J (2015) Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochim Acta 173:399–407CrossRef
7.
go back to reference Wu X, Xu A (2014) Carbonaceous hydrogels and aerogels for supercapacitors. J Mater Chem A 2:4852–4864CrossRef Wu X, Xu A (2014) Carbonaceous hydrogels and aerogels for supercapacitors. J Mater Chem A 2:4852–4864CrossRef
8.
go back to reference Yan H, Bai J, Wang J, Zhang X, Wang B, Liu Q, Liu L (2013) Graphene homogeneously anchored with Ni(OH)2 nanoparticles as advanced supercapacitor electrodes. CrystEngComm 15:10007–10015CrossRef Yan H, Bai J, Wang J, Zhang X, Wang B, Liu Q, Liu L (2013) Graphene homogeneously anchored with Ni(OH)2 nanoparticles as advanced supercapacitor electrodes. CrystEngComm 15:10007–10015CrossRef
9.
go back to reference Yang S, Gong Y, Liu Z, Zhan L, Hashim DP, Ma L, Vajtai R, Ajayan PM (2013) Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett 13:1596–1601 Yang S, Gong Y, Liu Z, Zhan L, Hashim DP, Ma L, Vajtai R, Ajayan PM (2013) Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett 13:1596–1601
10.
go back to reference Guo Y, Hu J, Wan L (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRef Guo Y, Hu J, Wan L (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRef
11.
go back to reference Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:4452 Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:4452
12.
go back to reference Ji J, Zhang L, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Rouff RS (2013) Nanoporous Ni (OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243CrossRef Ji J, Zhang L, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Rouff RS (2013) Nanoporous Ni (OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243CrossRef
13.
go back to reference Min S, Zhao C, Chen G, Qian X (2014) One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochim Acta 115:155–164CrossRef Min S, Zhao C, Chen G, Qian X (2014) One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochim Acta 115:155–164CrossRef
14.
go back to reference Yan J, Sun W, Wei T, Zhang Q, Zhang Q, Wei F (2012) Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J Mater Chem 22:11494–11502CrossRef Yan J, Sun W, Wei T, Zhang Q, Zhang Q, Wei F (2012) Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J Mater Chem 22:11494–11502CrossRef
15.
go back to reference Sun S, Lang J, Wang R, Kong L, Li X, Yan X (2014) Identifying pseudocapacitance of Fe2O3 in an ionic liquid and its application in asymmetric supercapacitors. J Mater Chem A 2:14550–14556CrossRef Sun S, Lang J, Wang R, Kong L, Li X, Yan X (2014) Identifying pseudocapacitance of Fe2O3 in an ionic liquid and its application in asymmetric supercapacitors. J Mater Chem A 2:14550–14556CrossRef
16.
go back to reference Wu LC, Chen YJ, Mao ML, Li QH, Zhang M (2014) Facile synthesis of spike-piece-structured Ni(OH)2 interlayer nanoplates on nickel foam as advanced pseudocapacitive materials for energy storage. ACS Appl Mater Interfaces 6:5168–5174CrossRef Wu LC, Chen YJ, Mao ML, Li QH, Zhang M (2014) Facile synthesis of spike-piece-structured Ni(OH)2 interlayer nanoplates on nickel foam as advanced pseudocapacitive materials for energy storage. ACS Appl Mater Interfaces 6:5168–5174CrossRef
17.
go back to reference Dubal DP, Gund GS, Lokhande CD, Holze R (2013) Decoration of spongelike Ni(OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors. ACS Appl Mater Interfaces 5:2446–2454CrossRef Dubal DP, Gund GS, Lokhande CD, Holze R (2013) Decoration of spongelike Ni(OH)2 nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors. ACS Appl Mater Interfaces 5:2446–2454CrossRef
18.
go back to reference Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477CrossRef Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477CrossRef
19.
go back to reference Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641CrossRef Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641CrossRef
20.
go back to reference Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213CrossRef Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213CrossRef
21.
go back to reference Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRef Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRef
22.
go back to reference Liu YF, Yuan GH, Jiang ZH, Yao ZP, Yue M (2015) Preparation of Ni(OH)2-graphene sheet-carbon nanotube composite as electrode material for supercapacitors. J Alloys Compd 618:37–43CrossRef Liu YF, Yuan GH, Jiang ZH, Yao ZP, Yue M (2015) Preparation of Ni(OH)2-graphene sheet-carbon nanotube composite as electrode material for supercapacitors. J Alloys Compd 618:37–43CrossRef
23.
go back to reference Gu L, Wang Y, Lu R, Wang W, Peng X, Sha J (2015) Silicon carbide nanowires@ Ni(OH)2 core–shell structures on carbon fabric for supercapacitor electrodes with excellent rate capability. J Power Sources 273:479–485CrossRef Gu L, Wang Y, Lu R, Wang W, Peng X, Sha J (2015) Silicon carbide nanowires@ Ni(OH)2 core–shell structures on carbon fabric for supercapacitor electrodes with excellent rate capability. J Power Sources 273:479–485CrossRef
24.
go back to reference Patil UM, Lee SC, Sohn JS, Kulkarni SV, Guravb KV, Kimb JH, Kimc JH, Leec S, Jun SC (2014) Enhanced symmetric supercapacitive performance of Co(OH)2 nanorods decorated conducting porous graphene foam electrodes. Electrochim Acta 129:334–342CrossRef Patil UM, Lee SC, Sohn JS, Kulkarni SV, Guravb KV, Kimb JH, Kimc JH, Leec S, Jun SC (2014) Enhanced symmetric supercapacitive performance of Co(OH)2 nanorods decorated conducting porous graphene foam electrodes. Electrochim Acta 129:334–342CrossRef
25.
go back to reference Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48:6707–6712CrossRef Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48:6707–6712CrossRef
26.
go back to reference Ferrari A (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef Ferrari A (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef
27.
go back to reference Cai F-S, Zhang G-Y, Chen J, Gou X-L, Liu H-K, Dou S-X (2004) Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries. Angew Chem Int Ed Engl 43:4212–4216CrossRef Cai F-S, Zhang G-Y, Chen J, Gou X-L, Liu H-K, Dou S-X (2004) Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries. Angew Chem Int Ed Engl 43:4212–4216CrossRef
28.
go back to reference Jiang H, Zhao T, Li C, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823CrossRef Jiang H, Zhao T, Li C, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823CrossRef
29.
go back to reference Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, Shin H-J, Yoon S-M, Choi J-Y, Park MH, Yang CW, Pribat D, Lee YG (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333CrossRef Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, Shin H-J, Yoon S-M, Choi J-Y, Park MH, Yang CW, Pribat D, Lee YG (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333CrossRef
30.
go back to reference Lee J, Ahn T, Soundararajan D (2011) Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem Commun 47:6305–6307CrossRef Lee J, Ahn T, Soundararajan D (2011) Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem Commun 47:6305–6307CrossRef
31.
go back to reference Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. In: Proceedings of the Cambridge Philosophical Society, pp 43–57 Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. In: Proceedings of the Cambridge Philosophical Society, pp 43–57
32.
go back to reference Momodu D, Barzegar F, Bello A, Dangbegnon J, Masikhwa T, Madito J, Manyala N (2015) Simonkolleite-graphene foam composites and their superior electrochemical performance. Electrochim Acta 151:591–598CrossRef Momodu D, Barzegar F, Bello A, Dangbegnon J, Masikhwa T, Madito J, Manyala N (2015) Simonkolleite-graphene foam composites and their superior electrochemical performance. Electrochim Acta 151:591–598CrossRef
33.
go back to reference Yang S, Wu X, Chen C, Dong H, Hu W, Wang X (2012) Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem Commun 48:2773–2775CrossRef Yang S, Wu X, Chen C, Dong H, Hu W, Wang X (2012) Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem Commun 48:2773–2775CrossRef
34.
go back to reference Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998CrossRef Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998CrossRef
35.
go back to reference Xu L, Ding Y, Chen C, Zhao L (2007) 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chem Mater 20:308–316CrossRef Xu L, Ding Y, Chen C, Zhao L (2007) 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chem Mater 20:308–316CrossRef
36.
go back to reference Tessier C, Guerlou-Demourgues L (2000) Structural study of zinc-substituted nickel hydroxides. J Mater Chem 10:1185–1193CrossRef Tessier C, Guerlou-Demourgues L (2000) Structural study of zinc-substituted nickel hydroxides. J Mater Chem 10:1185–1193CrossRef
37.
go back to reference Ren Y, Gao L (2010) From three-dimensional flower-like α-Ni(OH)2 nanostructures to hierarchical porous NiO nanoflowers: microwave-assisted fabrication and supercapacitor properties. J Am Ceram Soc 93:3560–3564CrossRef Ren Y, Gao L (2010) From three-dimensional flower-like α-Ni(OH)2 nanostructures to hierarchical porous NiO nanoflowers: microwave-assisted fabrication and supercapacitor properties. J Am Ceram Soc 93:3560–3564CrossRef
38.
go back to reference Liu X, Yu L (2004) Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Mater Lett 58:1327–1330CrossRef Liu X, Yu L (2004) Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Mater Lett 58:1327–1330CrossRef
39.
go back to reference Han D, Xu P, Jing X, Wanga J, Yang P, Shen Q, Liu J, Song D, Gao Z, Zhang M (2013) Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J Power Sources 235:45–53CrossRef Han D, Xu P, Jing X, Wanga J, Yang P, Shen Q, Liu J, Song D, Gao Z, Zhang M (2013) Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J Power Sources 235:45–53CrossRef
40.
go back to reference Cheng H, Su A, Li S, Nguyen ST, Lu L, Lim CYH, Duong HM (2014) Facile synthesis and advanced performance of Ni(OH)2/CNTs nanoflake composites on supercapacitor applications. Chem Phys Lett 601:168–173CrossRef Cheng H, Su A, Li S, Nguyen ST, Lu L, Lim CYH, Duong HM (2014) Facile synthesis and advanced performance of Ni(OH)2/CNTs nanoflake composites on supercapacitor applications. Chem Phys Lett 601:168–173CrossRef
41.
go back to reference Lee JW, Ahn T, Kim JH, Ko JM, Kim J-D (2011) Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim Acta 56:4849–4857CrossRef Lee JW, Ahn T, Kim JH, Ko JM, Kim J-D (2011) Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim Acta 56:4849–4857CrossRef
42.
go back to reference Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Sci Mag 343:1210–1211 Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Sci Mag 343:1210–1211
43.
go back to reference Yang W, Gao Z, Wang J, Ma J, Zhang M, Liu L (2013) Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl Mater Interfaces 5:5443–5454CrossRef Yang W, Gao Z, Wang J, Ma J, Zhang M, Liu L (2013) Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl Mater Interfaces 5:5443–5454CrossRef
44.
go back to reference Wang B, Liu Q, Qian Z, Zhang X, Wang J, Li Z, Yan H, Gao Z, Zhao F, Liu L (2014) Two steps in situ structure fabrication of Ni–Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. J Power Sources 246:747–753CrossRef Wang B, Liu Q, Qian Z, Zhang X, Wang J, Li Z, Yan H, Gao Z, Zhao F, Liu L (2014) Two steps in situ structure fabrication of Ni–Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. J Power Sources 246:747–753CrossRef
45.
go back to reference Wang L, Li X, Guo T, Yan X, Tay BK (2014) Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int J Hydrogen Energy 39:7876–7884CrossRef Wang L, Li X, Guo T, Yan X, Tay BK (2014) Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int J Hydrogen Energy 39:7876–7884CrossRef
46.
go back to reference Fan Z, Yan J, Wei T, Zhi L (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:366–2375CrossRef Fan Z, Yan J, Wei T, Zhi L (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:366–2375CrossRef
47.
go back to reference Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772–5777CrossRef Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772–5777CrossRef
Metadata
Title
A facile hydrothermal reflux synthesis of Ni(OH)2/GF electrode for supercapacitor application
Authors
A. A. Khaleed
A. Bello
J. K. Dangbegnon
F. U. Ugbo
F. Barzegar
D. Y. Momodu
M. J. Madito
T. M. Masikhwa
O. Olaniyan
N. Manyala
Publication date
28-03-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9910-y

Other articles of this Issue 12/2016

Journal of Materials Science 12/2016 Go to the issue

Premium Partners