Skip to main content
Top
Published in: Neural Processing Letters 2/2020

04-11-2019

A Feature Selection Algorithm Based on Equal Interval Division and Minimal-Redundancy–Maximal-Relevance

Authors: Xiangyuan Gu, Jichang Guo, Lijun Xiao, Tao Ming, Chongyi Li

Published in: Neural Processing Letters | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Minimal-redundancy–maximal-relevance (mRMR) algorithm is a typical feature selection algorithm. To select the feature which has minimal redundancy with the selected features and maximal relevance with the class label, the objective function of mRMR subtracts the average value of mutual information between features from mutual information between features and the class label, and selects the feature with the maximum difference. However, the problem is that the feature with the maximum difference is not always the feature with minimal redundancy maximal relevance. To solve the problem, the objective function of mRMR is first analyzed and a constraint condition that determines whether the objective function can guarantee the effectiveness of the selected features is achieved. Then, for the case where the objective function is not accurate, an idea of equal interval division is proposed and combined with ranking to process the interval of mutual information between features and the class label, and that of the average value of mutual information between features. Finally, a feature selection algorithm based on equal interval division and minimal-redundancy–maximal-relevance (EID–mRMR) is proposed. To validate the performance of EID–mRMR, we compare it with several incremental feature selection algorithms based on mutual information and other feature selection algorithms. Experimental results demonstrate that the EID–mRMR algorithm can achieve better feature selection performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tan MK, Tsang IW, Wang L (2014) Towards ultrahigh dimensional feature selection for big data. J Mach Learn Res 15:1371–1429MathSciNetMATH Tan MK, Tsang IW, Wang L (2014) Towards ultrahigh dimensional feature selection for big data. J Mach Learn Res 15:1371–1429MathSciNetMATH
2.
go back to reference Cataron A, Andonie R (2010) Energy supervised relevance neural gas for feature ranking. Neural Process Lett 32(1):59–73 Cataron A, Andonie R (2010) Energy supervised relevance neural gas for feature ranking. Neural Process Lett 32(1):59–73
3.
go back to reference Borja SP, Veronica BC, Amparo AB (2017) Testing different ensemble configurations for feature selection. Neural Process Lett 46:1–24 Borja SP, Veronica BC, Amparo AB (2017) Testing different ensemble configurations for feature selection. Neural Process Lett 46:1–24
4.
go back to reference Tiwari S, Singh B, Kaur M (2017) An approach for feature selection using local searching and global optimization techniques. Neural Comput Appl 28(10):2915–2930 Tiwari S, Singh B, Kaur M (2017) An approach for feature selection using local searching and global optimization techniques. Neural Comput Appl 28(10):2915–2930
5.
go back to reference Wang JZ, Wu LS, Kong J, Li YX, Zhang BX (2013) Maximum weight and minimum redundancy: a novel framework for feature subset selection. Pattern Recognit 46(6):1616–1627MATH Wang JZ, Wu LS, Kong J, Li YX, Zhang BX (2013) Maximum weight and minimum redundancy: a novel framework for feature subset selection. Pattern Recognit 46(6):1616–1627MATH
6.
go back to reference Shang CX, Li M, Feng SZ, Jiang QS, Fan JP (2013) Feature selection via maximizing global information gain for text classification. Knowl-Based Syst 54:298–309 Shang CX, Li M, Feng SZ, Jiang QS, Fan JP (2013) Feature selection via maximizing global information gain for text classification. Knowl-Based Syst 54:298–309
7.
go back to reference Tang B, Kay S, He HB (2016) Toward optimal feature selection in naive Bayes for text categorization. IEEE Trans Knowl Data Eng 28(9):2508–2521 Tang B, Kay S, He HB (2016) Toward optimal feature selection in naive Bayes for text categorization. IEEE Trans Knowl Data Eng 28(9):2508–2521
8.
go back to reference Fei T, Kraus D, Zoubir AM (2012) A hybrid relevance measure for feature selection and its application to underwater objects recognition. In: International conference on image processing, pp 97–100 Fei T, Kraus D, Zoubir AM (2012) A hybrid relevance measure for feature selection and its application to underwater objects recognition. In: International conference on image processing, pp 97–100
9.
go back to reference Fei T, Kraus D, Zoubir AM (2015) Contributions to automatic target recognition systems for underwater mine classification. IEEE Trans Geosci Remote Sens 53(1):505–518 Fei T, Kraus D, Zoubir AM (2015) Contributions to automatic target recognition systems for underwater mine classification. IEEE Trans Geosci Remote Sens 53(1):505–518
10.
go back to reference Zhang F, Chan PPK, Biggio B, Yeung DS, Roli F (2016) Adversarial feature selection against evasion attacks. IEEE Trans Cybern 46(3):766–777 Zhang F, Chan PPK, Biggio B, Yeung DS, Roli F (2016) Adversarial feature selection against evasion attacks. IEEE Trans Cybern 46(3):766–777
11.
go back to reference Veronica BC, Noelia SM, Amparo AB (2013) A review of feature selection methods on synthetic data. Knowl Inf Syst 34(3):483–519 Veronica BC, Noelia SM, Amparo AB (2013) A review of feature selection methods on synthetic data. Knowl Inf Syst 34(3):483–519
12.
go back to reference Jia XP, Kuo BC, Crawford MM (2013) Feature mining for hyperspectral image classification. Proc IEEE 101(3):676–697 Jia XP, Kuo BC, Crawford MM (2013) Feature mining for hyperspectral image classification. Proc IEEE 101(3):676–697
13.
go back to reference Lin CH, Chen HY, Wu YS (2014) Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection. Expert Syst Appl 41(15):6611–6621 Lin CH, Chen HY, Wu YS (2014) Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection. Expert Syst Appl 41(15):6611–6621
14.
go back to reference Zhao YH, Wang GR, Yin Y, Li Y, Wang ZH (2016) Improving ELM-based microarray data classification by diversified sequence features selection. Neural Comput Appl 27(1):155–166 Zhao YH, Wang GR, Yin Y, Li Y, Wang ZH (2016) Improving ELM-based microarray data classification by diversified sequence features selection. Neural Comput Appl 27(1):155–166
15.
go back to reference Estevez PA, Tesmer M, Perez CA, Zurada JM (2009) Normalized mutual information feature selection. IEEE Trans Neural Netw 20(2):189–201 Estevez PA, Tesmer M, Perez CA, Zurada JM (2009) Normalized mutual information feature selection. IEEE Trans Neural Netw 20(2):189–201
16.
go back to reference Brown G, Pocock A, Zhao MJ, Lujan M (2012) Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res 13:27–66MathSciNetMATH Brown G, Pocock A, Zhao MJ, Lujan M (2012) Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res 13:27–66MathSciNetMATH
17.
go back to reference Vergara JR, Estevez PA (2014) A review of feature selection methods based on mutual information. Neural Comput Appl 24(1):175–186 Vergara JR, Estevez PA (2014) A review of feature selection methods based on mutual information. Neural Comput Appl 24(1):175–186
18.
go back to reference Lewis DD (1992) Feature selection and feature extraction for text categorization. In: Proceedings of the workshop on speech and natural language, pp 212–217 Lewis DD (1992) Feature selection and feature extraction for text categorization. In: Proceedings of the workshop on speech and natural language, pp 212–217
19.
go back to reference Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238 Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238
20.
go back to reference Hoque N, Bhattacharyya DK, Kalita JK (2014) MIFS-ND: a mutual information-based feature selection method. Expert Syst Appl 41(14):6371–6385 Hoque N, Bhattacharyya DK, Kalita JK (2014) MIFS-ND: a mutual information-based feature selection method. Expert Syst Appl 41(14):6371–6385
21.
go back to reference Han M, Ren WJ (2015) Global mutual information-based feature selection approach using single-objective and multi-objective optimization. Neurocomputing 168:47–54 Han M, Ren WJ (2015) Global mutual information-based feature selection approach using single-objective and multi-objective optimization. Neurocomputing 168:47–54
22.
go back to reference Zhang Y, Ding C, Li T (2008) Gene selection algorithm by combining reliefF and mRMR. BMC Genom 9(2):1–10 Zhang Y, Ding C, Li T (2008) Gene selection algorithm by combining reliefF and mRMR. BMC Genom 9(2):1–10
23.
go back to reference Unler A, Murat A, Chinnam RB (2011) m\({r^2}\)PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf Sci 181(20):4625–4641 Unler A, Murat A, Chinnam RB (2011) m\({r^2}\)PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf Sci 181(20):4625–4641
24.
go back to reference Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550 Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550
27.
go back to reference Fayyad U, Irani K (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of joint conference on artificial intelligence, pp 1022–1027 Fayyad U, Irani K (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of joint conference on artificial intelligence, pp 1022–1027
28.
go back to reference Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18
29.
go back to reference Zhao Z, Morstatter F, Sharma S, Alelyani S, Anand A, Liu H (2010) Advancing feature selection research. In: ASU feature selection repository, pp 1–28 Zhao Z, Morstatter F, Sharma S, Alelyani S, Anand A, Liu H (2010) Advancing feature selection research. In: ASU feature selection repository, pp 1–28
30.
go back to reference Kwak N, Choi CH (2002) Input feature selection for classification problems. IEEE Trans Neural Netw 13(1):143–159 Kwak N, Choi CH (2002) Input feature selection for classification problems. IEEE Trans Neural Netw 13(1):143–159
31.
go back to reference Wang ZC, Li MQ, Li JZ (2015) A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure. Inf Sci 307:73–88MathSciNetMATH Wang ZC, Li MQ, Li JZ (2015) A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure. Inf Sci 307:73–88MathSciNetMATH
32.
go back to reference Foithong S, Pinngern O, Attachoo B (2012) Feature subset selection wrapper based on mutual information and rough sets. Expert Syst Appl 39(1):574–584 Foithong S, Pinngern O, Attachoo B (2012) Feature subset selection wrapper based on mutual information and rough sets. Expert Syst Appl 39(1):574–584
33.
go back to reference Kononenko I (1994) Estimating attributes: analysis and extension of RELIEF. In: Proceedings of European conference on machine learning, pp 171–182 Kononenko I (1994) Estimating attributes: analysis and extension of RELIEF. In: Proceedings of European conference on machine learning, pp 171–182
34.
go back to reference Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley-Interscience Publication, New YorkMATH Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley-Interscience Publication, New YorkMATH
35.
go back to reference Rodriguez-Lujan I, Huerta R, Elkan C, Cruz CS (2010) Quadratic programming feature selection. J Mach Learn Res 11:1491–1516MathSciNetMATH Rodriguez-Lujan I, Huerta R, Elkan C, Cruz CS (2010) Quadratic programming feature selection. J Mach Learn Res 11:1491–1516MathSciNetMATH
36.
go back to reference Nguyen XV, Chan J, Romano S, Bailey J (2014) Effective global approaches for mutual information based feature selection. In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining, pp 512–521 Nguyen XV, Chan J, Romano S, Bailey J (2014) Effective global approaches for mutual information based feature selection. In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining, pp 512–521
37.
go back to reference Herman G, Zhang B, Wang Y, Ye GT, Chen F (2013) Mutual information-based method for selecting informative feature sets. Pattern Recognit 46(12):3315–3327 Herman G, Zhang B, Wang Y, Ye GT, Chen F (2013) Mutual information-based method for selecting informative feature sets. Pattern Recognit 46(12):3315–3327
38.
go back to reference Fleuret F (2004) Fast binary feature selection with conditional mutual information. J Mach Learn Res 5:1531–1555MathSciNetMATH Fleuret F (2004) Fast binary feature selection with conditional mutual information. J Mach Learn Res 5:1531–1555MathSciNetMATH
39.
go back to reference Sun X, Liu YH, Xu MT, Chen HL, Han JW, Wang KH (2013) Feature selection using dynamic weights for classification. Knowl-Based Syst 37:541–549 Sun X, Liu YH, Xu MT, Chen HL, Han JW, Wang KH (2013) Feature selection using dynamic weights for classification. Knowl-Based Syst 37:541–549
40.
go back to reference Bennasar M, Hicks Y, Setchi R (2015) Feature selection using joint mutual information maximisation. Expert Syst Appl 42(22):8520–8532 Bennasar M, Hicks Y, Setchi R (2015) Feature selection using joint mutual information maximisation. Expert Syst Appl 42(22):8520–8532
41.
go back to reference Zeng ZL, Zhang HJ, Zhang R, Yin CX (2015) A novel feature selection method considering feature interaction. Pattern Recognit 48(8):2656–2666 Zeng ZL, Zhang HJ, Zhang R, Yin CX (2015) A novel feature selection method considering feature interaction. Pattern Recognit 48(8):2656–2666
42.
go back to reference Shishkin A, Bezzubtseva AA, Drutsa A, Shishkov I, Gladkikh E, Gusev G, Serdyukov P (2016) Efficient high order interaction aware feature selection based on conditional mutual information. In: Proceedings of the conference on advances in neural information processing systems, pp 4637–4645 Shishkin A, Bezzubtseva AA, Drutsa A, Shishkov I, Gladkikh E, Gusev G, Serdyukov P (2016) Efficient high order interaction aware feature selection based on conditional mutual information. In: Proceedings of the conference on advances in neural information processing systems, pp 4637–4645
43.
go back to reference Vinh NX, Zhou S, Chan J, Bailey J (2016) Can high-order dependencies improve mutual information based feature selection. Pattern Recognit 53:46–58MATH Vinh NX, Zhou S, Chan J, Bailey J (2016) Can high-order dependencies improve mutual information based feature selection. Pattern Recognit 53:46–58MATH
44.
go back to reference Wang J, Wei JM, Yang ZL, Wang SQ (2017) Feature selection by maximizing independent classification information. IEEE Trans Knowl Data Eng 29(4):828–841 Wang J, Wei JM, Yang ZL, Wang SQ (2017) Feature selection by maximizing independent classification information. IEEE Trans Knowl Data Eng 29(4):828–841
45.
go back to reference Gao WF, Hu L, Zhang P (2018) Class-specific mutual information variation for feature selection. Pattern Recognit 79:328–339 Gao WF, Hu L, Zhang P (2018) Class-specific mutual information variation for feature selection. Pattern Recognit 79:328–339
46.
go back to reference Gao WF, Hu L, Zhang P, He JL (2018) Feature selection considering the composition of feature relevancy. Pattern Recognit Lett 112:70–74 Gao WF, Hu L, Zhang P, He JL (2018) Feature selection considering the composition of feature relevancy. Pattern Recognit Lett 112:70–74
Metadata
Title
A Feature Selection Algorithm Based on Equal Interval Division and Minimal-Redundancy–Maximal-Relevance
Authors
Xiangyuan Gu
Jichang Guo
Lijun Xiao
Tao Ming
Chongyi Li
Publication date
04-11-2019
Publisher
Springer US
Published in
Neural Processing Letters / Issue 2/2020
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-019-10144-3

Other articles of this Issue 2/2020

Neural Processing Letters 2/2020 Go to the issue