Skip to main content
Top

2020 | OriginalPaper | Chapter

A Framework for Building Uncertainty Wrappers for AI/ML-Based Data-Driven Components

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

More and more software-intensive systems include components that are data-driven in the sense that they use models based on artificial intelligence (AI) or machine learning (ML). Since the outcomes of such models cannot be assumed to always be correct, related uncertainties must be understood and taken into account when decisions are made using these outcomes. This applies, in particular, if such decisions affect the safety of the system. To date, however, hardly any AI-/ML-based model provides dependable estimates of the uncertainty remaining in its outcomes. In order to address this limitation, we present a framework for encapsulating existing models applied in data-driven components with an uncertainty wrapper in order to enrich the model outcome with a situation-aware and dependable uncertainty statement. The presented framework is founded on existing work on the concept and mathematical foundation of uncertainty wrappers. The application of the framework is illustrated using pedestrian detection as an example, which is a particularly safety-critical feature in the context of autonomous driving. The Brier score and its components are used to investigate how the key aspects of the framework (scoping, clustering, calibration, and confidence limits) can influence the quality of uncertainty estimates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kläs, M.: Towards Identifying and Managing Sources of Uncertainty in AI and Machine Learning Models - An Overview. arXiv:1811.11669 (2018) Kläs, M.: Towards Identifying and Managing Sources of Uncertainty in AI and Machine Learning Models - An Overview. arXiv:​1811.​11669 (2018)
2.
go back to reference Kläs, M., Sembach, L.: Uncertainty wrappers for data-driven models – increase the transparency of AI/ML-based models through enrichment with dependable situation-aware uncertainty estimates. In: WAISE 2019, Turku, Finland (2019) Kläs, M., Sembach, L.: Uncertainty wrappers for data-driven models – increase the transparency of AI/ML-based models through enrichment with dependable situation-aware uncertainty estimates. In: WAISE 2019, Turku, Finland (2019)
3.
go back to reference Kläs, M., Vollmer, A.M.: Uncertainty in machine learning applications – a practice-driven classification of uncertainty. In: WAISE 2018, Västerås, Sweden (2018) Kläs, M., Vollmer, A.M.: Uncertainty in machine learning applications – a practice-driven classification of uncertainty. In: WAISE 2018, Västerås, Sweden (2018)
4.
go back to reference Phan, B., Khan, S., Salay, R., Czarnecki, K.: Bayesian uncertainty quantification with synthetic data. In: WAISE 2019, Turku, Finland (2019) Phan, B., Khan, S., Salay, R., Czarnecki, K.: Bayesian uncertainty quantification with synthetic data. In: WAISE 2019, Turku, Finland (2019)
5.
go back to reference Gal, Y.: Uncertainty in Deep Learning. University of Cambridge, Cambridge (2016) Gal, Y.: Uncertainty in Deep Learning. University of Cambridge, Cambridge (2016)
6.
go back to reference Henne, M., Schwaiger, A., Roscher, K., Weiss, G.: Benchmarking uncertainty estimation methods for deep learning with safety-related metrics. In: SafeAI 2020, New York, USA (2020) Henne, M., Schwaiger, A., Roscher, K., Weiss, G.: Benchmarking uncertainty estimation methods for deep learning with safety-related metrics. In: SafeAI 2020, New York, USA (2020)
7.
go back to reference Snoek, J., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: Advances in Neural Information Processing Systems (2019) Snoek, J., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: Advances in Neural Information Processing Systems (2019)
8.
go back to reference Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: 22nd International Conference on Machine Learning (2005) Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: 22nd International Conference on Machine Learning (2005)
9.
go back to reference Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH
10.
go back to reference Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty for safe automated driving. In: WAISE 2018, Västerås, Sweden (2018) Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty for safe automated driving. In: WAISE 2018, Västerås, Sweden (2018)
11.
go back to reference Matsuno, Y., Ishikawa, F., Tokumoto, S.: Tackling uncertainty in safety assurance for machine learning: continuous argument engineering with attributed tests. In: WAISE 2019, Turku, Finland (2019) Matsuno, Y., Ishikawa, F., Tokumoto, S.: Tackling uncertainty in safety assurance for machine learning: continuous argument engineering with attributed tests. In: WAISE 2019, Turku, Finland (2019)
13.
go back to reference Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78(1), 1–3 (1950)CrossRef Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78(1), 1–3 (1950)CrossRef
14.
go back to reference Murphy, A.H.: A new vector partition of the probability score. J. Appl. Meteorol. 12(4), 595–600 (1973)CrossRef Murphy, A.H.: A new vector partition of the probability score. J. Appl. Meteorol. 12(4), 595–600 (1973)CrossRef
18.
go back to reference Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: 1st Annual Conference on Robot Learning (2017) Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: 1st Annual Conference on Robot Learning (2017)
19.
go back to reference Pimentel, M., Clifton, D., Clifton, L., Tarassenko, L.: A review of novelty detection. Sig. Process. 99, 215–249 (2014)CrossRef Pimentel, M., Clifton, D., Clifton, L., Tarassenko, L.: A review of novelty detection. Sig. Process. 99, 215–249 (2014)CrossRef
20.
go back to reference Kumar, A., Liang, P.S., Ma, T.: Verified uncertainty calibration. In: NIPS 2019 (2019) Kumar, A., Liang, P.S., Ma, T.: Verified uncertainty calibration. In: NIPS 2019 (2019)
Metadata
Title
A Framework for Building Uncertainty Wrappers for AI/ML-Based Data-Driven Components
Authors
Michael Kläs
Lisa Jöckel
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-55583-2_23

Premium Partner