Skip to main content
Top
Published in: Journal of Materials Science 16/2020

02-03-2020 | Energy materials

A high-entropy perovskite titanate lithium-ion battery anode

Authors: Jinhua Yan, Dan Wang, Xiaoyan Zhang, Jinsheng Li, Qiang Du, Xinyue Liu, Jinrong Zhang, Xiwei Qi

Published in: Journal of Materials Science | Issue 16/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A class of high-entropy perovskite oxide (HEPO) [(Bi,Na)1/5(La,Li)1/5(Ce,K)1/5Ca1/5Sr1/5]TiO3 has been synthesized by conventional solid-state method and explored as anode material for lithium-ion batteries. The half-battery provides a high initial discharge capacity of about 125.9 mAh g−1 and exhibits excellent cycle stability. An outstanding reversible capacity of 120.4 mAh g−1 and superior delivering retention of ~ 100% can be obtained at 1000 mA g−1 after 300 cycles. Even at a high current density of 3000 mA g−1, a reversible capacity of 70 mAh g−1 can be retained, indicating excellent rate performance. Such outstanding cycle and rate performance can be ascribed to the entropy-stabilized structure offered by mixed aliovalent cations and the charge compensation mechanism in HEPO, respectively. This work highlights the great potential of perovskite high-entropy oxides as anode materials for lithium-ion batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Song ZP, Zhou HS (2013) Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci 6:2280–2301CrossRef Song ZP, Zhou HS (2013) Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci 6:2280–2301CrossRef
3.
go back to reference Dusastre V, Martiradonna L (2017) Materials for sustainable energy. Nat Mater 16:15–15CrossRef Dusastre V, Martiradonna L (2017) Materials for sustainable energy. Nat Mater 16:15–15CrossRef
4.
go back to reference Xiang H, Chen J, Li Z, Wang H (2011) An inorganic membrane as a separator for lithium-ion battery. J Power Sources 196:8651–8655CrossRef Xiang H, Chen J, Li Z, Wang H (2011) An inorganic membrane as a separator for lithium-ion battery. J Power Sources 196:8651–8655CrossRef
6.
go back to reference Song ZY, Wang H, Hou J, Hofmann HF, Sun J (2020) Combined state and parameter estimation of lithium-ion battery with active current injection. IEEE Trans Power Electron 35:4439–4447CrossRef Song ZY, Wang H, Hou J, Hofmann HF, Sun J (2020) Combined state and parameter estimation of lithium-ion battery with active current injection. IEEE Trans Power Electron 35:4439–4447CrossRef
7.
go back to reference Wu DX, Wang CY, Wu MG, Chao YF, He PB, Ma JM (2020) Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem 43:24–32CrossRef Wu DX, Wang CY, Wu MG, Chao YF, He PB, Ma JM (2020) Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem 43:24–32CrossRef
8.
go back to reference Wu JB, Pan GX, Zhong WW, Yang L, Deng SJ, Xia XH (2020) Rational synthesis of Cr0.5Nb24.5O62 microspheres as high-rate electrodes for lithium ion batteries. J Colloid Interface Sci 562:511–517CrossRef Wu JB, Pan GX, Zhong WW, Yang L, Deng SJ, Xia XH (2020) Rational synthesis of Cr0.5Nb24.5O62 microspheres as high-rate electrodes for lithium ion batteries. J Colloid Interface Sci 562:511–517CrossRef
9.
go back to reference Chen X, He W, Ding L-X, Wang S, Wang H (2019) Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci 12:938–944CrossRef Chen X, He W, Ding L-X, Wang S, Wang H (2019) Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci 12:938–944CrossRef
11.
go back to reference Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu PC, Wang J, Cheng HM, Cui Y (2017) Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol 12:993–999CrossRef Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu PC, Wang J, Cheng HM, Cui Y (2017) Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol 12:993–999CrossRef
12.
go back to reference Lim S, Kim JH, Yamada Y, Munakata H, Lee YS, Kim SS, Kanamura K (2017) Improvement of rate capability by graphite foam anode for Li secondary batteries. J Power Sources 355:164–170CrossRef Lim S, Kim JH, Yamada Y, Munakata H, Lee YS, Kim SS, Kanamura K (2017) Improvement of rate capability by graphite foam anode for Li secondary batteries. J Power Sources 355:164–170CrossRef
13.
go back to reference Luo S-H, Hu D-B, Liu H, Li J-Z, Yi T-F (2019) Hydrothermal synthesis and characterization of α-Fe2O3/C using acid-pickled iron oxide red for Li-ion batteries. J Hazard Mater 368:714–721CrossRef Luo S-H, Hu D-B, Liu H, Li J-Z, Yi T-F (2019) Hydrothermal synthesis and characterization of α-Fe2O3/C using acid-pickled iron oxide red for Li-ion batteries. J Hazard Mater 368:714–721CrossRef
14.
go back to reference Liu H, Luo S-H, Yan S-X, Wang Q, Hu D-B, Wang Y-L, Feng J, Yi T-F (2019) High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Compos Part B Eng 164:576–582CrossRef Liu H, Luo S-H, Yan S-X, Wang Q, Hu D-B, Wang Y-L, Feng J, Yi T-F (2019) High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Compos Part B Eng 164:576–582CrossRef
15.
go back to reference Huang G, Li Q, Yin DM, Wang LM (2017) Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@metal-organic frameworks for superior lithium storage capability. Adv Funct Mater 27:7–14 Huang G, Li Q, Yin DM, Wang LM (2017) Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@metal-organic frameworks for superior lithium storage capability. Adv Funct Mater 27:7–14
16.
go back to reference Weng G-M, Kong J, Wang H, Karpovich C, Lipton J, Antonio F, Fishman ZS, Wang H, Yuan W, Taylor AD (2020) A highly efficient perovskite photovoltaic-aqueous Li/Na-ion battery system. Energy Storage Mater 24:557–564CrossRef Weng G-M, Kong J, Wang H, Karpovich C, Lipton J, Antonio F, Fishman ZS, Wang H, Yuan W, Taylor AD (2020) A highly efficient perovskite photovoltaic-aqueous Li/Na-ion battery system. Energy Storage Mater 24:557–564CrossRef
18.
go back to reference Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP (2015) Entropy-stabilized oxides Nat Commun 6:8–14 Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP (2015) Entropy-stabilized oxides Nat Commun 6:8–14
19.
go back to reference Chen KP, Pei XT, Tang L, Cheng HR, Li ZM, Li CW, Zhang XW, An LA (2018) A five-component entropy-stabilized fluorite oxide. J Eur Ceram Soc 38:4161–4164CrossRef Chen KP, Pei XT, Tang L, Cheng HR, Li ZM, Li CW, Zhang XW, An LA (2018) A five-component entropy-stabilized fluorite oxide. J Eur Ceram Soc 38:4161–4164CrossRef
20.
go back to reference Jiang SC, Hu T, Gild J, Zhou NX, Nie JY, Qin MD, Harrington T, Vecchio K, Luo J (2018) A new class of high-entropy perovskite oxides. Scr Mater 142:116–120CrossRef Jiang SC, Hu T, Gild J, Zhou NX, Nie JY, Qin MD, Harrington T, Vecchio K, Luo J (2018) A new class of high-entropy perovskite oxides. Scr Mater 142:116–120CrossRef
21.
go back to reference Ye BL, Ning SS, Liu D, Wen TQ, Chu YH (2019) One-step synthesis of coral-like high-entropy metal carbide powders. J Am Ceram Soc 102:6372–6378CrossRef Ye BL, Ning SS, Liu D, Wen TQ, Chu YH (2019) One-step synthesis of coral-like high-entropy metal carbide powders. J Am Ceram Soc 102:6372–6378CrossRef
22.
go back to reference Dabrowa J, Stygar M, Mikula A, Knapik A, Mroczka K, Tejchman W, Danielewski M, Martin M (2018) Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)(3)O-4 high entropy oxide characterized by spinel structure. Mater Lett 216:32–36CrossRef Dabrowa J, Stygar M, Mikula A, Knapik A, Mroczka K, Tejchman W, Danielewski M, Martin M (2018) Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)(3)O-4 high entropy oxide characterized by spinel structure. Mater Lett 216:32–36CrossRef
23.
go back to reference Berardan D, Franger S, Meena AK, Dragoe N (2016) Room temperature lithium superionic conductivity in high entropy oxides. J Mater Chem A 4:9536–9541CrossRef Berardan D, Franger S, Meena AK, Dragoe N (2016) Room temperature lithium superionic conductivity in high entropy oxides. J Mater Chem A 4:9536–9541CrossRef
24.
go back to reference Sarkar A, Velasco L, Wang D, Wang QS, Talasila G, de Biasi L, Kubel C, Brezesinski T, Bhattacharya SS, Hahn H, Breitung B (2018) High entropy oxides for reversible energy storage. Nat Commun 9:9–16CrossRef Sarkar A, Velasco L, Wang D, Wang QS, Talasila G, de Biasi L, Kubel C, Brezesinski T, Bhattacharya SS, Hahn H, Breitung B (2018) High entropy oxides for reversible energy storage. Nat Commun 9:9–16CrossRef
26.
go back to reference Berardan D, Meena AK, Franger S, Herrero C, Dragoe N (2017) Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J Alloys Compd 704:693–700CrossRef Berardan D, Meena AK, Franger S, Herrero C, Dragoe N (2017) Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J Alloys Compd 704:693–700CrossRef
27.
go back to reference Su S, Liu Q, Wang J, Fan L, Ma R, Chen S, Han X, Lu B (2019) Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl Mater Interfaces 11:22474–22480CrossRef Su S, Liu Q, Wang J, Fan L, Ma R, Chen S, Han X, Lu B (2019) Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl Mater Interfaces 11:22474–22480CrossRef
28.
go back to reference Wu J, Han C, Wu H, Liu H, Zhang Y, Lu C (2019) Nanocoating of Ce-tannic acid metal-organic coordination complex: surface modification of layered Li1.2Mn0.6Ni0.2O2 by CeO2 coating for lithium-ion batteries. J Alloys Compd 25:3035–3040 Wu J, Han C, Wu H, Liu H, Zhang Y, Lu C (2019) Nanocoating of Ce-tannic acid metal-organic coordination complex: surface modification of layered Li1.2Mn0.6Ni0.2O2 by CeO2 coating for lithium-ion batteries. J Alloys Compd 25:3035–3040
29.
go back to reference Lee K-C, Chang-Jian C-W, Ho B-C, Ding Y-R, Huang J-H, Hsiao Y-S (2019) Conductive PProDOT-Me2–capped Li4Ti5O12 microspheres with an optimized Ti3+/Ti4+ ratio for enhanced and rapid lithium-ion storage. Ceram Int 45:15252–15261CrossRef Lee K-C, Chang-Jian C-W, Ho B-C, Ding Y-R, Huang J-H, Hsiao Y-S (2019) Conductive PProDOT-Me2–capped Li4Ti5O12 microspheres with an optimized Ti3+/Ti4+ ratio for enhanced and rapid lithium-ion storage. Ceram Int 45:15252–15261CrossRef
30.
go back to reference Osenciat N, Bérardan D, Dragoe D, Léridon B, Holé S, Meena AK, Franger S, Dragoe N (2019) Charge compensation mechanisms in Li‐substituted high entropy oxides and influence on Li superionic conductivity. J Am Ceram Soc 102:6156–6162CrossRef Osenciat N, Bérardan D, Dragoe D, Léridon B, Holé S, Meena AK, Franger S, Dragoe N (2019) Charge compensation mechanisms in Lisubstituted high entropy oxides and influence on Li superionic conductivity. J Am Ceram Soc 102:6156–6162CrossRef
31.
go back to reference Chen Z, Wang Z, Kim G-T, Yang G, Wang H, Wang X, Huang Y, Passerini S, Shen Z (2019) Enhancing the Electrochemical performance of LiNi0.4Co0.2Mn0.4O2 by V2O5/LiV3O8 Coating. ACS Appl Mater Interfaces 11:26994–27003CrossRef Chen Z, Wang Z, Kim G-T, Yang G, Wang H, Wang X, Huang Y, Passerini S, Shen Z (2019) Enhancing the Electrochemical performance of LiNi0.4Co0.2Mn0.4O2 by V2O5/LiV3O8 Coating. ACS Appl Mater Interfaces 11:26994–27003CrossRef
32.
go back to reference Shi W, Ding R, Xu QL, Yan T, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH (2019) Vacancy defective perovskite Na0.85Ni0.45Co0.55F3.56 nanocrystal anodes for advanced lithium-ion storage driven by surface conversion and insertion hybrid mechanisms. Chem Commun 55:6739–6742CrossRef Shi W, Ding R, Xu QL, Yan T, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH (2019) Vacancy defective perovskite Na0.85Ni0.45Co0.55F3.56 nanocrystal anodes for advanced lithium-ion storage driven by surface conversion and insertion hybrid mechanisms. Chem Commun 55:6739–6742CrossRef
33.
go back to reference Zhang YN, Dong P, Zhao JB, Li X, Zhang YJ (2019) Simple solution-combustion synthesis of Fe2TiO5 nanomaterials with enhanced lithium storage properties. Ceram Int 45:11382–11387CrossRef Zhang YN, Dong P, Zhao JB, Li X, Zhang YJ (2019) Simple solution-combustion synthesis of Fe2TiO5 nanomaterials with enhanced lithium storage properties. Ceram Int 45:11382–11387CrossRef
34.
go back to reference Qiu CX, Yuan ZZ, Liu L, Cheng SJ, Liu JC (2013) Sol-gel synthesis and electrochemical performance of Li4-xMgxTi5-xZrxO12 anode material for lithium-ion batteries. Chin J Chem 31:819–825CrossRef Qiu CX, Yuan ZZ, Liu L, Cheng SJ, Liu JC (2013) Sol-gel synthesis and electrochemical performance of Li4-xMgxTi5-xZrxO12 anode material for lithium-ion batteries. Chin J Chem 31:819–825CrossRef
35.
go back to reference Han ZS, Kong FJ, He XL, Tao S, Jiang XF, Qian B (2019) CeO2 nanoparticles embedded into one dimensional N doped carbon matrix as a high performance anode for lithium ion batteries. J Phys Chem Solids 134:187–192CrossRef Han ZS, Kong FJ, He XL, Tao S, Jiang XF, Qian B (2019) CeO2 nanoparticles embedded into one dimensional N doped carbon matrix as a high performance anode for lithium ion batteries. J Phys Chem Solids 134:187–192CrossRef
36.
go back to reference Cai ZY, Xu L, Yan MY, Han CH, He L, Hercule KM, Niu CJ, Yuan ZF, Xu WW, Qu LB, Zhao KN, Mai LQ (2015) Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett 15:738–744CrossRef Cai ZY, Xu L, Yan MY, Han CH, He L, Hercule KM, Niu CJ, Yuan ZF, Xu WW, Qu LB, Zhao KN, Mai LQ (2015) Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett 15:738–744CrossRef
37.
go back to reference Qiu N, Chen H, Yang ZM, Sun S, Wang Y, Cui YH (2019) A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J Alloys Compd 777:767–774CrossRef Qiu N, Chen H, Yang ZM, Sun S, Wang Y, Cui YH (2019) A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J Alloys Compd 777:767–774CrossRef
38.
go back to reference Sharma AS, Yadav S, Biswas K, Basu B (2018) High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Mater Sci Eng R Rep 131:1–42CrossRef Sharma AS, Yadav S, Biswas K, Basu B (2018) High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Mater Sci Eng R Rep 131:1–42CrossRef
39.
go back to reference Gu Y, Zhang X, Du Q, Li Y, Zhang M, Pan H, Qi X (2019) Electrochemical tuning induced oxygen vacancies for the photoluminescence enhancement. Ceram Int 46:4071–4078CrossRef Gu Y, Zhang X, Du Q, Li Y, Zhang M, Pan H, Qi X (2019) Electrochemical tuning induced oxygen vacancies for the photoluminescence enhancement. Ceram Int 46:4071–4078CrossRef
Metadata
Title
A high-entropy perovskite titanate lithium-ion battery anode
Authors
Jinhua Yan
Dan Wang
Xiaoyan Zhang
Jinsheng Li
Qiang Du
Xinyue Liu
Jinrong Zhang
Xiwei Qi
Publication date
02-03-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04482-0

Other articles of this Issue 16/2020

Journal of Materials Science 16/2020 Go to the issue

Premium Partners