Skip to main content
Top
Published in: Calcolo 3/2017

31-10-2016

A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection–diffusion equations

Author: Yuan-Ming Wang

Published in: Calcolo | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper is concerned with high-order numerical methods for a class of fractional mobile/immobile convection–diffusion equations. The convection coefficient of the equation may be spatially variable. In order to overcome the difficulty caused by variable coefficient problems, we first transform the original equation into a special and equivalent form, which is then discretized by a fourth-order compact finite difference approximation for the spatial derivative and a second-order difference approximation for the time first derivative and the Caputo time fractional derivative. The local truncation error and the solvability of the resulting scheme are discussed in detail. The (almost) unconditional stability and convergence of the method are proved using a discrete energy analysis method. A Richardson extrapolation algorithm is presented to enhance the temporal accuracy of the computed solution from the second-order to the third-order. Applications using two model problems give numerical results that demonstrate the accuracy of the new method and the high efficiency of the Richardson extrapolation algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Benson, D.A., Meerschaert, M.M.: A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations. Adv. Water Resour. 32, 532–539 (2009)CrossRef Benson, D.A., Meerschaert, M.M.: A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations. Adv. Water Resour. 32, 532–539 (2009)CrossRef
2.
go back to reference Bromly, M., Hinz, C.: Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour. Res. 40, W07402 (2004)CrossRef Bromly, M., Hinz, C.: Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour. Res. 40, W07402 (2004)CrossRef
3.
go back to reference Cao, J.Y., Xu, C.J.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)MathSciNetCrossRefMATH Cao, J.Y., Xu, C.J.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)MathSciNetCrossRefMATH
4.
go back to reference Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker–Planck equation. Appl. Math. Model. 33, 256–273 (2009)MathSciNetCrossRefMATH Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker–Planck equation. Appl. Math. Model. 33, 256–273 (2009)MathSciNetCrossRefMATH
5.
go back to reference de Smedt, F., Wierenga, P.J.: Solute transfer through columns of glass beads. Water Resour. Res. 20, 225–232 (1984)CrossRef de Smedt, F., Wierenga, P.J.: Solute transfer through columns of glass beads. Water Resour. Res. 20, 225–232 (1984)CrossRef
6.
go back to reference Dentz, M., Berkowitz, B.: Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water Resour. Res. 39, 1111 (2003)CrossRef Dentz, M., Berkowitz, B.: Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water Resour. Res. 39, 1111 (2003)CrossRef
7.
go back to reference Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)CrossRefMATH Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)CrossRefMATH
8.
go back to reference Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5, 1–45 (2014)MathSciNet Dimitrov, Y.: Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5, 1–45 (2014)MathSciNet
9.
go back to reference Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)MathSciNetCrossRefMATH Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)MathSciNetCrossRefMATH
10.
go back to reference Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRefMATH Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetCrossRefMATH
11.
go back to reference Gaudet, J.P., Jegat, H., Vachaud, G., Wierenga, P.: Solute transfer, with exchange between mobile and stagnant water, through unsaturated sand. Soil Sci. Soc. Am. J. 41, 665–671 (1977)CrossRef Gaudet, J.P., Jegat, H., Vachaud, G., Wierenga, P.: Solute transfer, with exchange between mobile and stagnant water, through unsaturated sand. Soil Sci. Soc. Am. J. 41, 665–671 (1977)CrossRef
12.
go back to reference Goltz, M.N., Roberts, P.V.: Using the method of moments to analyze three-dimensional diffusion-limited solute transport from temporal and spatial perspectives. Water Resour. Res. 23, 1575–1585 (1987)CrossRef Goltz, M.N., Roberts, P.V.: Using the method of moments to analyze three-dimensional diffusion-limited solute transport from temporal and spatial perspectives. Water Resour. Res. 23, 1575–1585 (1987)CrossRef
13.
go back to reference Gouze, P., Melean, Y., Le Borgne, T., Dentz, M., Carrera, J.: Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion. Water Resour. Res. 44, W11416 (2008) Gouze, P., Melean, Y., Le Borgne, T., Dentz, M., Carrera, J.: Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion. Water Resour. Res. 44, W11416 (2008)
14.
go back to reference Haggerty, R., McKenna, S.A., Meigs, L.C.: On the late-time behavior of tracer test breakthrough curves. Water Resour. Res. 36, 3467–3479 (2000)CrossRef Haggerty, R., McKenna, S.A., Meigs, L.C.: On the late-time behavior of tracer test breakthrough curves. Water Resour. Res. 36, 3467–3479 (2000)CrossRef
15.
go back to reference Harvey, C., Gorelick, S.M.: Rate-limited mass transfer or macrodispersion: which dominates plume evolution at the macrodispersion experiment (MADE) site? Water Resour. Res. 36, 637–650 (2000)CrossRef Harvey, C., Gorelick, S.M.: Rate-limited mass transfer or macrodispersion: which dominates plume evolution at the macrodispersion experiment (MADE) site? Water Resour. Res. 36, 637–650 (2000)CrossRef
16.
go back to reference Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)MathSciNetCrossRefMATH Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)MathSciNetCrossRefMATH
17.
go back to reference Li, C.P., Chen, A., Ye, J.J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230, 3352–3368 (2011)MathSciNetCrossRefMATH Li, C.P., Chen, A., Ye, J.J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230, 3352–3368 (2011)MathSciNetCrossRefMATH
18.
go back to reference Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)MATH Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)MATH
19.
go back to reference Liao, W.: A compact high-order finite difference method for unsteady convection-diffusion equation. Int. J. Comput. Methods Eng. Sci. Mech. 13, 135–145 (2012) Liao, W.: A compact high-order finite difference method for unsteady convection-diffusion equation. Int. J. Comput. Methods Eng. Sci. Mech. 13, 135–145 (2012)
20.
go back to reference Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)MathSciNetCrossRefMATH Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)MathSciNetCrossRefMATH
21.
go back to reference Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.T.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)MathSciNetMATH Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.T.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)MathSciNetMATH
22.
go back to reference Meerschaert, M.M., Zhang, Y., Baeumer, B.: Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, 1078–1086 (2010)MathSciNetCrossRefMATH Meerschaert, M.M., Zhang, Y., Baeumer, B.: Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, 1078–1086 (2010)MathSciNetCrossRefMATH
23.
go back to reference Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)MATH
24.
go back to reference Padilla, I.Y., Yeh, T.C.J., Conklin, M.H.: The effect of water content on solute transport in unsaturated porous media. Water Resour. Res. 35, 3303–3313 (1999)CrossRef Padilla, I.Y., Yeh, T.C.J., Conklin, M.H.: The effect of water content on solute transport in unsaturated porous media. Water Resour. Res. 35, 3303–3313 (1999)CrossRef
25.
go back to reference Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1997)MATH Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1997)MATH
26.
27.
go back to reference Schumer, R.: Fractional derivatives, continuous time random walks, and anomalous solute transport. Ph.D. thesis, University of Nevada, Reno (2002) Schumer, R.: Fractional derivatives, continuous time random walks, and anomalous solute transport. Ph.D. thesis, University of Nevada, Reno (2002)
28.
go back to reference Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1296 (2003) Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1296 (2003)
29.
30.
go back to reference van Genuchten, M.T., Wierenga, P.J.: Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci. Soc. Am. J. 40, 473–480 (1976)CrossRef van Genuchten, M.T., Wierenga, P.J.: Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci. Soc. Am. J. 40, 473–480 (1976)CrossRef
32.
go back to reference Vong, S., Wang, Z.: High order difference schemes for a time-fractional differential equation with Neumann boundary conditions. East Asian J. Appl. Math. 4, 222–241 (2014)MathSciNetCrossRefMATH Vong, S., Wang, Z.: High order difference schemes for a time-fractional differential equation with Neumann boundary conditions. East Asian J. Appl. Math. 4, 222–241 (2014)MathSciNetCrossRefMATH
33.
go back to reference Wang, Y.M.: A compact finite difference method for solving a class of time fractional convection-subdiffusion equations. BIT 55, 1187–1217 (2015)MathSciNetCrossRefMATH Wang, Y.M.: A compact finite difference method for solving a class of time fractional convection-subdiffusion equations. BIT 55, 1187–1217 (2015)MathSciNetCrossRefMATH
34.
go back to reference Wang, Y.M.: A compact finite difference method for a class of time fractional convection-diffusion-wave equations with variable coefficients. Numer. Algorithms 70, 625–651 (2015)MathSciNetCrossRefMATH Wang, Y.M.: A compact finite difference method for a class of time fractional convection-diffusion-wave equations with variable coefficients. Numer. Algorithms 70, 625–651 (2015)MathSciNetCrossRefMATH
35.
go back to reference Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)MathSciNetCrossRefMATH Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)MathSciNetCrossRefMATH
36.
go back to reference Zhai, S.Y., Feng, X.L., He, Y.N.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. J. Comput. Phys. 269, 138–155 (2014)MathSciNetCrossRefMATH Zhai, S.Y., Feng, X.L., He, Y.N.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. J. Comput. Phys. 269, 138–155 (2014)MathSciNetCrossRefMATH
37.
go back to reference Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection–dispersion model. Comput. Math. Appl. 66, 693–701 (2013)MathSciNetCrossRefMATH Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection–dispersion model. Comput. Math. Appl. 66, 693–701 (2013)MathSciNetCrossRefMATH
38.
go back to reference Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)CrossRef Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)CrossRef
39.
go back to reference Zhang, Y., Meerschaert, M.M., Baeumer, B.: Particle tracking for time-fractional diffusion. Phys. Rev. E 78, 036705 (2008)CrossRef Zhang, Y., Meerschaert, M.M., Baeumer, B.: Particle tracking for time-fractional diffusion. Phys. Rev. E 78, 036705 (2008)CrossRef
40.
go back to reference Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)MathSciNetCrossRefMATH Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)MathSciNetCrossRefMATH
41.
go back to reference Zhao, L.J., Deng, W.H.: A series of high order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. Numer. Methods Partial Differ. Equ. 31, 1345–1381 (2015)MathSciNetCrossRefMATH Zhao, L.J., Deng, W.H.: A series of high order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. Numer. Methods Partial Differ. Equ. 31, 1345–1381 (2015)MathSciNetCrossRefMATH
Metadata
Title
A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection–diffusion equations
Author
Yuan-Ming Wang
Publication date
31-10-2016
Publisher
Springer Milan
Published in
Calcolo / Issue 3/2017
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-016-0207-y

Other articles of this Issue 3/2017

Calcolo 3/2017 Go to the issue

Premium Partner