Skip to main content
Top

2020 | OriginalPaper | Chapter

10. A Higher-Order Cut-Cell Methodology for Large Eddy Simulation of Compressible Viscous Flow Problems with Embedded Boundaries

Authors : Balaji Muralidharan, Suresh Menon

Published in: Immersed Boundary Method

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We have developed a finite volume-based conservative cut-cell method that is up to third-order accurate for simulation of compressible viscous flow problems. A sharp representation of the embedded boundaries, described using a signed distance function, is facilitated by use of block-structured adaptive mesh refinement. A high-order reconstruction is performed by using a cell-centered piecewise polynomial approximation of flow quantities. To ensure the stability of the scheme in the presence of very low volume cut-cells, a novel cell clustering approach that preserves the design order of accuracy even locally has been developed. It is shown through numerical examples that using the proposed approach, smooth representation of flow-field quantities and their derivatives can be achieved on embedded boundaries. Smooth reconstruction of wall shear stress and a high-order accuracy makes this approach a good candidate for large eddy simulation (LES). A multi-level extension of the one-equation kinetic subgrid energy-based closure to perform LES with local refinement and embedded boundaries is presented. Results are shown for various canonical cases to demonstrate the accuracy of the approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Berger M, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82:64–84CrossRef Berger M, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82:64–84CrossRef
go back to reference Berger M, Aftosmis M (2012) Progress towards a Cartesian cut-cell method for viscous compressible flow. In: 50th AIAA conference, Nashville, TN, p 1301 Berger M, Aftosmis M (2012) Progress towards a Cartesian cut-cell method for viscous compressible flow. In: 50th AIAA conference, Nashville, TN, p 1301
go back to reference Cecere D, Giacomazzi E (2014) An immersed volume method for large eddy simulation of compressible flows using a staggered-grid approach. Comput Methods Appl Mech Eng 280:1–27MathSciNetCrossRef Cecere D, Giacomazzi E (2014) An immersed volume method for large eddy simulation of compressible flows using a staggered-grid approach. Comput Methods Appl Mech Eng 280:1–27MathSciNetCrossRef
go back to reference Chakravarthy V, Menon S (2001) Large eddy simulation of turbulent premixed flames in the flamelet regime. Combust Sci Technol 162:175–222CrossRef Chakravarthy V, Menon S (2001) Large eddy simulation of turbulent premixed flames in the flamelet regime. Combust Sci Technol 162:175–222CrossRef
go back to reference Clarke D, Salas M, Hassan H (1986) Euler calculations for multi-element airfoils using Cartesian grids. AIAA J 24:1128–1135CrossRef Clarke D, Salas M, Hassan H (1986) Euler calculations for multi-element airfoils using Cartesian grids. AIAA J 24:1128–1135CrossRef
go back to reference Coirier W, Powell K (1996) Solution-adaptive Cartesian cell approach for viscous and inviscid flows. AIAA J 34(5):938–945CrossRef Coirier W, Powell K (1996) Solution-adaptive Cartesian cell approach for viscous and inviscid flows. AIAA J 34(5):938–945CrossRef
go back to reference Hartmann D, Meinke M, Schröder W (2008) An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comput Fluids 37:1103–1125MathSciNetCrossRef Hartmann D, Meinke M, Schröder W (2008) An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comput Fluids 37:1103–1125MathSciNetCrossRef
go back to reference Hartmann D, Meinke M, Schröder W (2011) A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput Methods Appl Mech Eng 200:1038–1052MathSciNetCrossRef Hartmann D, Meinke M, Schröder W (2011) A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput Methods Appl Mech Eng 200:1038–1052MathSciNetCrossRef
go back to reference Ivan L, Groth C (2014) High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows. J Comput Phys 257(A):830–862MathSciNetCrossRef Ivan L, Groth C (2014) High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows. J Comput Phys 257(A):830–862MathSciNetCrossRef
go back to reference Kawai S, Larsson J (2012) Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys Fluids 24(1):015105CrossRef Kawai S, Larsson J (2012) Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys Fluids 24(1):015105CrossRef
go back to reference Kim C-S (2001) An immersed-boundary finite volume method for simulations of flow in complex geometeries. J Comput Phys 171:132–150MathSciNetCrossRef Kim C-S (2001) An immersed-boundary finite volume method for simulations of flow in complex geometeries. J Comput Phys 171:132–150MathSciNetCrossRef
go back to reference Kravchenko AG, Moin P (1997) On the effect of numerical errors in large eddy simulations of turbulent flows. J Comput Phys 131(2):310–322CrossRef Kravchenko AG, Moin P (1997) On the effect of numerical errors in large eddy simulations of turbulent flows. J Comput Phys 131(2):310–322CrossRef
go back to reference MacCormack R (2003) The effect of viscosity in hypervelocity impact cratering. J Spacecraft Rockets 40(5):757–763CrossRef MacCormack R (2003) The effect of viscosity in hypervelocity impact cratering. J Spacecraft Rockets 40(5):757–763CrossRef
go back to reference Majumdar S, Iaccarino G, Durbin P (2001) RANS solver with adaptive structured boundary non-conforming grids. Annu Res Briefs Cent Turb Res, pp 353–364 Majumdar S, Iaccarino G, Durbin P (2001) RANS solver with adaptive structured boundary non-conforming grids. Annu Res Briefs Cent Turb Res, pp 353–364
go back to reference Merlin C, Domingo P, Vervisch L (2012) Immersed boundaries in large eddy simulation of compressible flows. Flow Turbul Combust 90(1):29–68CrossRef Merlin C, Domingo P, Vervisch L (2012) Immersed boundaries in large eddy simulation of compressible flows. Flow Turbul Combust 90(1):29–68CrossRef
go back to reference Meyer M, Devesa D, Hickel S, Hu X, Adams N (2010) A conservative immersed interface method for large eddy simulation for incompressible flows. J Comput Phys 229:6300–6317MathSciNetCrossRef Meyer M, Devesa D, Hickel S, Hu X, Adams N (2010) A conservative immersed interface method for large eddy simulation for incompressible flows. J Comput Phys 229:6300–6317MathSciNetCrossRef
go back to reference Muralidharan B, Menon S (2016) A high-order adaptive cartesian cut-cell method for simulation of compressible viscous flow over immersed bodies. J Comput Phys 321:342–368MathSciNetCrossRef Muralidharan B, Menon S (2016) A high-order adaptive cartesian cut-cell method for simulation of compressible viscous flow over immersed bodies. J Comput Phys 321:342–368MathSciNetCrossRef
go back to reference Muralidharan B, Menon S (2018) Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive cartesian cut-cell method. J Comput Phys 357:230–262MathSciNetCrossRef Muralidharan B, Menon S (2018) Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive cartesian cut-cell method. J Comput Phys 357:230–262MathSciNetCrossRef
go back to reference Muralidharan B, Menon S (2019) A consistent multi-level subgrid scale closure for large eddy simulation of compressible flow using adaptive mesh refinement. Comput Fluids 180:159–175MathSciNetCrossRef Muralidharan B, Menon S (2019) A consistent multi-level subgrid scale closure for large eddy simulation of compressible flow using adaptive mesh refinement. Comput Fluids 180:159–175MathSciNetCrossRef
go back to reference Norberg C (1987) Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder, vol 87. Chalmers University, Goteborg, Sweden, Technological Publications, p 2 Norberg C (1987) Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder, vol 87. Chalmers University, Goteborg, Sweden, Technological Publications, p 2
go back to reference Ong L, Wallace J (1996) The velocity field of the turbulent very near wake of a circular cylinder. Exp Fluids 20(6):441–453CrossRef Ong L, Wallace J (1996) The velocity field of the turbulent very near wake of a circular cylinder. Exp Fluids 20(6):441–453CrossRef
go back to reference Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Applied mathematical science. Springer, New York,CrossRef Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Applied mathematical science. Springer, New York,CrossRef
go back to reference Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49MathSciNetCrossRef Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49MathSciNetCrossRef
go back to reference Ranjan R, Menon S (2015) On the application of the two-level large-eddy simulation method to turbulent free-shear and wake flows. J Turbul 16(2):136–166CrossRef Ranjan R, Menon S (2015) On the application of the two-level large-eddy simulation method to turbulent free-shear and wake flows. J Turbul 16(2):136–166CrossRef
go back to reference Rodriguez I, Borell R, Lehmkuhl O, Segarra CDP, Oliva A (2011) Direct numerical simulation of the flow over a sphere at Re= 3700. J Fluid Mech 679:263–287CrossRef Rodriguez I, Borell R, Lehmkuhl O, Segarra CDP, Oliva A (2011) Direct numerical simulation of the flow over a sphere at Re= 3700. J Fluid Mech 679:263–287CrossRef
go back to reference Shih WCL, Wang C, Coles D, Roshko A (1993) Experiments on flow past rough circular cylinders at large reynolds numbers. J Wind Eng Ind Aerodyn 49(1–3):351–368CrossRef Shih WCL, Wang C, Coles D, Roshko A (1993) Experiments on flow past rough circular cylinders at large reynolds numbers. J Wind Eng Ind Aerodyn 49(1–3):351–368CrossRef
go back to reference Son JS, Hanratty TJ (1969) Velocity gradients at the wall for flow around a cylinder at reynolds numbers from 5\(\times \)\(10^3\) to \(10^5\). J Fluid Mech 35(02):353–368CrossRef Son JS, Hanratty TJ (1969) Velocity gradients at the wall for flow around a cylinder at reynolds numbers from 5\(\times \)\(10^3\) to \(10^5\). J Fluid Mech 35(02):353–368CrossRef
go back to reference Toro E (2009) Riemann solvers and numerical methods for fluid mechanics, 3rd edn. Springer, Berlin Toro E (2009) Riemann solvers and numerical methods for fluid mechanics, 3rd edn. Springer, Berlin
go back to reference Udaykumar H, Shyy W, Rao M (1996) A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. Int J Numer Methods 22:691–705MathSciNetCrossRef Udaykumar H, Shyy W, Rao M (1996) A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. Int J Numer Methods 22:691–705MathSciNetCrossRef
go back to reference Yang G, Causon D, Ingram D (2000) Calculation of compressible flows about complex moving geometries using a three-dimensional Cartesian cut cell method. Int J Num Methods Fluids 33:1121–1151CrossRef Yang G, Causon D, Ingram D (2000) Calculation of compressible flows about complex moving geometries using a three-dimensional Cartesian cut cell method. Int J Num Methods Fluids 33:1121–1151CrossRef
Metadata
Title
A Higher-Order Cut-Cell Methodology for Large Eddy Simulation of Compressible Viscous Flow Problems with Embedded Boundaries
Authors
Balaji Muralidharan
Suresh Menon
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3940-4_10

Premium Partners