Skip to main content
Top

2014 | OriginalPaper | Chapter

A LabVIEW Based Data Acquisition System for Electrical Impedance Tomography (EIT)

Authors : Tushar Kanti Bera, J. Nagaraju

Published in: Proceedings of the Third International Conference on Soft Computing for Problem Solving

Publisher: Springer India

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A LabVIEW based data acquisition system (LV-DAS) is developed for Electrical Impedance Tomography (EIT) for automatic current injection and boundary data collection. The developed LV-DAS consists of a NIUSB-6251 DAQ card, NISCB-68 connector module and an automatic electrode switching module (A-ESM). A LabVIEW based graphical user interface (LV-GUI) is develop to control the current injection and data acquisition by LV-DAS through A-ESM. Boundary data are collected for a number of practical phantoms and the boundary data profiles are studied to assess the LV-DAS. Results show that the high resolution NIDAQ card of the DAS improves its data acquisition performance with accurate measurement and high signal to noise ratio (SNR).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Webster, J.G.: Electrical Impedance Tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York (1990) Webster, J.G.: Electrical Impedance Tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York (1990)
2.
go back to reference Bera, T.K., Nagaraju, J.: Electrical Impedance Tomography (EIT): A Harmless Medical Imaging Modality. Research Developments in Computer Vision and Image Processing: Methodologies and Applications, Chap. 13, pp. 224–262. IGI Global, USA (2013) Bera, T.K., Nagaraju, J.: Electrical Impedance Tomography (EIT): A Harmless Medical Imaging Modality. Research Developments in Computer Vision and Image Processing: Methodologies and Applications, Chap. 13, pp. 224–262. IGI Global, USA (2013)
3.
go back to reference Wanga, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46, 2845–2853 (2013)CrossRef Wanga, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46, 2845–2853 (2013)CrossRef
4.
go back to reference Bera, T.K., Nagaraju, J.: Studies on the thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement. 47, 264–286 (2014). Impact Factor: 1.130 Bera, T.K., Nagaraju, J.: Studies on the thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement. 47, 264–286 (2014). Impact Factor: 1.130
5.
go back to reference Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications, 1st edn. Institute of Physics Publishing Ltd., UK (2005) Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications, 1st edn. Institute of Physics Publishing Ltd., UK (2005)
6.
go back to reference Bera, T.K., Nagaraju, J.: A MATLAB based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J. Med. Eng. 15 (2013) (Article ID 193578) Bera, T.K., Nagaraju, J.: A MATLAB based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J. Med. Eng. 15 (2013) (Article ID 193578)
7.
go back to reference Bera, T.K., Nagaraju, J.: Elemental resistivity profile analysis of EIT images to assess the reconstructed image quality. Int. J. Inf. Process. 7(1), 1–14 (2013) Bera, T.K., Nagaraju, J.: Elemental resistivity profile analysis of EIT images to assess the reconstructed image quality. Int. J. Inf. Process. 7(1), 1–14 (2013)
8.
go back to reference Bushberg, J.T., Seibert, J.A., Leidholdt Jr., E.M., Boone, J.M.: The Essential Physics of Medical Imaging, 3rd edition. Lippincott Williams & Wilkins; Third, North American Edition edition (20 Dec 2011) Bushberg, J.T., Seibert, J.A., Leidholdt Jr., E.M., Boone, J.M.: The Essential Physics of Medical Imaging, 3rd edition. Lippincott Williams & Wilkins; Third, North American Edition edition (20 Dec 2011)
9.
go back to reference Hiller, J., Reindl, L.M.: A computer simulation platform for the estimation of measurement uncertainties in dimensional X-ray computed tomography. Measurement 45(8), 2166–2182 (2012)CrossRef Hiller, J., Reindl, L.M.: A computer simulation platform for the estimation of measurement uncertainties in dimensional X-ray computed tomography. Measurement 45(8), 2166–2182 (2012)CrossRef
10.
go back to reference Davis, J., Wells, P.: Computed tomography measurements on wood. Ind. Metrol. 2(3–4), 195–218 (1992)CrossRef Davis, J., Wells, P.: Computed tomography measurements on wood. Ind. Metrol. 2(3–4), 195–218 (1992)CrossRef
11.
go back to reference Bera, T.K., Nagaraju, J.: Sensors for electrical impedance tomography. In: Webster, J.G. (ed.) The Measurement, Instrumentation, and Sensors Handbook, 2nd edition. CRC Press, Boca Raton, Chap. 61, pp. 61-1–61-30 (2014) Bera, T.K., Nagaraju, J.: Sensors for electrical impedance tomography. In: Webster, J.G. (ed.) The Measurement, Instrumentation, and Sensors Handbook, 2nd edition. CRC Press, Boca Raton, Chap. 61, pp. 61-1–61-30 (2014)
12.
go back to reference Lionheart, W.R.B.: EIT reconstruction algorithms: pitfalls, challenges and recent developments. Review Article, Physiol. Meas. 25, 125–142. PII: S0967-3334(04)70421-9 (2004) Lionheart, W.R.B.: EIT reconstruction algorithms: pitfalls, challenges and recent developments. Review Article, Physiol. Meas. 25, 125–142. PII: S0967-3334(04)70421-9 (2004)
13.
go back to reference Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J. Electr. Bioimp. 2, 33–47 (2011) Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J. Electr. Bioimp. 2, 33–47 (2011)
14.
go back to reference Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J. Electr. Bioimp. 2, 2–12 (2011) Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J. Electr. Bioimp. 2, 2–12 (2011)
15.
go back to reference Bera, T.K., Nagaraju, J.: Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography. Measurement 44(3), 518–526 (2011)CrossRef Bera, T.K., Nagaraju, J.: Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography. Measurement 44(3), 518–526 (2011)CrossRef
16.
go back to reference Kerner, T.E., Williams, D.B., Osterman, K.S., Reiss, F.R., Hartov, A., Paulsen, K.D.: Electrical impedance imaging at multiple frequencies in phantoms. Physiol. Meas. 21, 67–77 (2000)CrossRef Kerner, T.E., Williams, D.B., Osterman, K.S., Reiss, F.R., Hartov, A., Paulsen, K.D.: Electrical impedance imaging at multiple frequencies in phantoms. Physiol. Meas. 21, 67–77 (2000)CrossRef
17.
go back to reference Griffiths, H.: A cole phantom for EIT. Physiol. Meas. 16(1995), A29–A38 (1995)CrossRef Griffiths, H.: A cole phantom for EIT. Physiol. Meas. 16(1995), A29–A38 (1995)CrossRef
18.
go back to reference Kim, B.S., Kim, K.Y., Kao, T.J., Newell, J.C., Isaacson, D., Saulnier, G.J.: Dynamic electrical impedance imaging of a chest phantom using the Kalman filter. Physiol. Meas. 27(5), S81–S91 (2006)CrossRef Kim, B.S., Kim, K.Y., Kao, T.J., Newell, J.C., Isaacson, D., Saulnier, G.J.: Dynamic electrical impedance imaging of a chest phantom using the Kalman filter. Physiol. Meas. 27(5), S81–S91 (2006)CrossRef
19.
go back to reference Kimoto, A., Shida, K.: Imaging of temperature-change distribution in the brain phantom by means of capacitance measurement. IEEE Trans. Instrum. Measur. 49(3), 591–595 (2000) Kimoto, A., Shida, K.: Imaging of temperature-change distribution in the brain phantom by means of capacitance measurement. IEEE Trans. Instrum. Measur. 49(3), 591–595 (2000)
20.
go back to reference Li, Yi: Manucher soleimani imaging conductive materials with high frequency electrical capacitance tomography. Measurement 46, 3355–3361 (2013)CrossRef Li, Yi: Manucher soleimani imaging conductive materials with high frequency electrical capacitance tomography. Measurement 46, 3355–3361 (2013)CrossRef
21.
go back to reference Sadleiry, R., Foxz, R.: Quantification of blood volume by electrical impedance tomography using a tissue-equivalent phantom. Physiol. Meas. 19, 501–516 (1998)CrossRef Sadleiry, R., Foxz, R.: Quantification of blood volume by electrical impedance tomography using a tissue-equivalent phantom. Physiol. Meas. 19, 501–516 (1998)CrossRef
22.
go back to reference Holder, D.S., Khan, A.: Use of polyacrylamide gels in a saline-filled tank to determine the linearity of the Sheffield Mark 1 electrical impedance tomography (EIT) system in measuring impedance disturbances. Physiol. Meas. 15, A45–A50 (1994)CrossRef Holder, D.S., Khan, A.: Use of polyacrylamide gels in a saline-filled tank to determine the linearity of the Sheffield Mark 1 electrical impedance tomography (EIT) system in measuring impedance disturbances. Physiol. Meas. 15, A45–A50 (1994)CrossRef
23.
go back to reference Bera, T.K., Nagaraju, J.: A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sens. Imaging Int. J. 12(3–4), 95–116 (2011)CrossRef Bera, T.K., Nagaraju, J.: A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sens. Imaging Int. J. 12(3–4), 95–116 (2011)CrossRef
24.
go back to reference Kao, T.J., Saulnier, G.J., Isaacson, D., Szabo, T.L., Newell, J.C.: A versatile high-permittivity phantom for EIT. IEEE Trans. Biomed. Eng. 55(11), 2601 (2008)CrossRef Kao, T.J., Saulnier, G.J., Isaacson, D., Szabo, T.L., Newell, J.C.: A versatile high-permittivity phantom for EIT. IEEE Trans. Biomed. Eng. 55(11), 2601 (2008)CrossRef
25.
go back to reference Wanga, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46, 2845–2853 (2013)CrossRef Wanga, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46, 2845–2853 (2013)CrossRef
26.
go back to reference Bera, T.K., Nagaraju, J.: A stainless steel electrode phantom to study the forward problem of electrical impedance tomography (EIT). Sens. Transducers J. 104(5), 33–40 (2009) Bera, T.K., Nagaraju, J.: A stainless steel electrode phantom to study the forward problem of electrical impedance tomography (EIT). Sens. Transducers J. 104(5), 33–40 (2009)
27.
go back to reference Bera, T.K., Nagaraju. J.: A multifrequency electrical impedance tomography (EIT) system for biomedical imaging. In: IEEE International Conference on Signal Processing and Communications (SPCOM 2012), IISc-Bangalore, India pp. 1–5 Bera, T.K., Nagaraju. J.: A multifrequency electrical impedance tomography (EIT) system for biomedical imaging. In: IEEE International Conference on Signal Processing and Communications (SPCOM 2012), IISc-Bangalore, India pp. 1–5
28.
go back to reference Bera, T.K., Nagaraju, J.: A simple instrumentation calibration technique for electrical impedance tomography (EIT) using a 16–electrode phantom. In: Proceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009), India, 2009, pp. 347–352 Bera, T.K., Nagaraju, J.: A simple instrumentation calibration technique for electrical impedance tomography (EIT) using a 16–electrode phantom. In: Proceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009), India, 2009, pp. 347–352
29.
go back to reference Bera, T.K., Nagaraju, J.: A study of practical biological phantoms with simple instrumentation for electrical impedance tomography (EIT). In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), Singapore, pp. 511–516, 5th–7th May 2009 Bera, T.K., Nagaraju, J.: A study of practical biological phantoms with simple instrumentation for electrical impedance tomography (EIT). In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), Singapore, pp. 511–516, 5th–7th May 2009
30.
go back to reference Robitaille, N., Guardo, R., Maurice, I., Hartinger, A.E., Gagnon, H.: A multi-frequency EIT system design based on telecommunication signal processors. Physiol. Meas. 30, S57–S71 (2009)CrossRef Robitaille, N., Guardo, R., Maurice, I., Hartinger, A.E., Gagnon, H.: A multi-frequency EIT system design based on telecommunication signal processors. Physiol. Meas. 30, S57–S71 (2009)CrossRef
31.
go back to reference Goharian, M., Soleimani, M., Jegatheesan, A., Chin, K., Moran, G.R.: A DSP based multi-frequency 3D electrical impedance tomography system. Ann. Biomed. Eng. 36, 1594–1603 (2008)CrossRef Goharian, M., Soleimani, M., Jegatheesan, A., Chin, K., Moran, G.R.: A DSP based multi-frequency 3D electrical impedance tomography system. Ann. Biomed. Eng. 36, 1594–1603 (2008)CrossRef
32.
go back to reference Oh, T.I., Koo, H., Lee, K.H., Kim, S.M., Lee, J., Kim, S.W., Seo, J.K., Woo, E.J.: Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging. Physiol. Meas. 29, 295–307 (2008)CrossRef Oh, T.I., Koo, H., Lee, K.H., Kim, S.M., Lee, J., Kim, S.W., Seo, J.K., Woo, E.J.: Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging. Physiol. Meas. 29, 295–307 (2008)CrossRef
33.
go back to reference Jennings, D., Schneider, I.D.: Front-end architecture for a multifrequency electrical impedance tomography system. Med. Biol. Eng. Compu. 39(3), 368–374 (2001)CrossRef Jennings, D., Schneider, I.D.: Front-end architecture for a multifrequency electrical impedance tomography system. Med. Biol. Eng. Compu. 39(3), 368–374 (2001)CrossRef
34.
go back to reference Mohamadou, Y., Oh, T.I., Wi, H., Sohal, H., Farooq, A., Woo, E. J., McEwan, A.: Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source. Meas. Sci. Technol. 23(10), 105703 (2012) Mohamadou, Y., Oh, T.I., Wi, H., Sohal, H., Farooq, A., Woo, E. J., McEwan, A.: Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source. Meas. Sci. Technol. 23(10), 105703 (2012)
35.
go back to reference Ross, A.S., Saulnier, G.J., Newell, J.C., Isaacson, D.: Current source design for electrical impedance tomography. Physiol. Meas. 24, 509–516 (2003)CrossRef Ross, A.S., Saulnier, G.J., Newell, J.C., Isaacson, D.: Current source design for electrical impedance tomography. Physiol. Meas. 24, 509–516 (2003)CrossRef
36.
go back to reference Lee, J.W., Oh, T.I., Paek, S.M., Lee, J.S., Woo, E.J.: Precision constant current source for electrical impedance tomography. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, pp. 1066–1069 (2003) Lee, J.W., Oh, T.I., Paek, S.M., Lee, J.S., Woo, E.J.: Precision constant current source for electrical impedance tomography. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, pp. 1066–1069 (2003)
37.
go back to reference Gnecchi, J.A.G.: Voltage controlled current source (VCCCS) for electrical impedance tomography (EIT) measurements in the α and β dispersion frequency ranges. In: 2010 Electronics, Robotics and Automotive Mechanics Conference, pp. 677–681 Gnecchi, J.A.G.: Voltage controlled current source (VCCCS) for electrical impedance tomography (EIT) measurements in the α and β dispersion frequency ranges. In: 2010 Electronics, Robotics and Automotive Mechanics Conference, pp. 677–681
38.
go back to reference Bera, T.K., Nagaraju, J.: A multifrequency constant current source suitable for electrical impedance tomography (EIT). In: Proceedings of 2010 International Conference on Systems in Medicine and Biology. IIT Kharagpur, India, pp. 278–283, 16–18 Dec 2010 Bera, T.K., Nagaraju, J.: A multifrequency constant current source suitable for electrical impedance tomography (EIT). In: Proceedings of 2010 International Conference on Systems in Medicine and Biology. IIT Kharagpur, India, pp. 278–283, 16–18 Dec 2010
39.
go back to reference Silverio, E.A.A., Silverio, E.A.A.: A high output impedance current source for wideband bioimpedance spectroscopy using 0.35 μm Tsmc Cmos technology. Int. J. Eng. Appl. Sci. 1(2), 68–75 (2012) Silverio, E.A.A., Silverio, E.A.A.: A high output impedance current source for wideband bioimpedance spectroscopy using 0.35 μm Tsmc Cmos technology. Int. J. Eng. Appl. Sci. 1(2), 68–75 (2012)
40.
go back to reference Corrêa Alegria, F., Martinho, E., Almeidac, F.: Measuring soil contamination with the time domain induced polarization method using LabVIEW. Measurement 42, 1082–1091 (2009)CrossRef Corrêa Alegria, F., Martinho, E., Almeidac, F.: Measuring soil contamination with the time domain induced polarization method using LabVIEW. Measurement 42, 1082–1091 (2009)CrossRef
41.
go back to reference Morse D.H., Antolak A.J., Bench G.S., Roberts M.L.: A flexible LabVIEWTM-based data acquisition and analysis system for scanning microscopy. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact Mate Atoms, 158(1), 146–152(7) (2 Sept 1999) Morse D.H., Antolak A.J., Bench G.S., Roberts M.L.: A flexible LabVIEWTM-based data acquisition and analysis system for scanning microscopy. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact Mate Atoms, 158(1), 146–152(7) (2 Sept 1999)
42.
go back to reference D’Mello, P.C., D’Souza, S.: Design and development of a virtual instrument for bio-signal acquisition and processing using LabVIEW. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 1(1), 1–9 (2012) D’Mello, P.C., D’Souza, S.: Design and development of a virtual instrument for bio-signal acquisition and processing using LabVIEW. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 1(1), 1–9 (2012)
43.
go back to reference Sumathi, S., Surekha, P.: LabVIEW Based Advanced Instrumentation Systems, 1st edn. Springer, Berlin (2007) Sumathi, S., Surekha, P.: LabVIEW Based Advanced Instrumentation Systems, 1st edn. Springer, Berlin (2007)
44.
go back to reference Czerwinski, F., Oddershede, L.B.: TimeSeriesStreaming.vi: LabVIEW program for reliable data streaming of large analog time series. Comput. Phys. Commun. 182, 485–489 (2011)CrossRefMATH Czerwinski, F., Oddershede, L.B.: TimeSeriesStreaming.vi: LabVIEW program for reliable data streaming of large analog time series. Comput. Phys. Commun. 182, 485–489 (2011)CrossRefMATH
45.
go back to reference Bo, L., Liu, X., He, X.: Measurement system for wind turbines noises assessment based on LabVIEW. Measurement 44, 445–453 (2011)CrossRef Bo, L., Liu, X., He, X.: Measurement system for wind turbines noises assessment based on LabVIEW. Measurement 44, 445–453 (2011)CrossRef
46.
go back to reference Wang, Z., Shang, Y., Liu, J., Xidong, W.: A LabVIEW based automatic test system for sieving chips. Measurement 46(1), 402–410 (2013)CrossRef Wang, Z., Shang, Y., Liu, J., Xidong, W.: A LabVIEW based automatic test system for sieving chips. Measurement 46(1), 402–410 (2013)CrossRef
47.
go back to reference Giannone, L., Eich, T., Fuchs, J.C., Ravindran, M., Ruan, Q., Wenzel, L., Cernaa, M., Concezzi, S.: Data acquisition and real-time bolometer tomography using LabVIEW RT. Fusion Eng. Des. 86, 1129–1132 (2011)CrossRef Giannone, L., Eich, T., Fuchs, J.C., Ravindran, M., Ruan, Q., Wenzel, L., Cernaa, M., Concezzi, S.: Data acquisition and real-time bolometer tomography using LabVIEW RT. Fusion Eng. Des. 86, 1129–1132 (2011)CrossRef
48.
go back to reference Yue, X., Drakakis, E.M., Lim, M., Radomska, A., Ye, H., Mantalaris, A., Panoskaltsis, N., Cass, A.: A real-time multi-channel monitoring system for stem cell culture process. IEEE Trans. Biomed. Circuits Syst. 2(2), 66–77 (2008)CrossRef Yue, X., Drakakis, E.M., Lim, M., Radomska, A., Ye, H., Mantalaris, A., Panoskaltsis, N., Cass, A.: A real-time multi-channel monitoring system for stem cell culture process. IEEE Trans. Biomed. Circuits Syst. 2(2), 66–77 (2008)CrossRef
49.
go back to reference Fontenot, R.S., Hollermana, W.A., Aggarwal, M.D., Bhat, K.N., Goedekea, S.M.: A versatile low-cost laboratory apparatus for testing triboluminescent materials. Measurement 45, 431–436 (2012)CrossRef Fontenot, R.S., Hollermana, W.A., Aggarwal, M.D., Bhat, K.N., Goedekea, S.M.: A versatile low-cost laboratory apparatus for testing triboluminescent materials. Measurement 45, 431–436 (2012)CrossRef
50.
go back to reference Andrei, H., Dogaru-Ulieru, V., Chicco, G., Cepisca, C., Spertino, F.: Photovoltaic applications. J. Mater. Process. Technol. 181, 267–273 (2007)CrossRef Andrei, H., Dogaru-Ulieru, V., Chicco, G., Cepisca, C., Spertino, F.: Photovoltaic applications. J. Mater. Process. Technol. 181, 267–273 (2007)CrossRef
51.
go back to reference Ni, J.-Q., Heber, A.J.: An on-site computer system for comprehensive agricultural air quality research. Comput. Electron. Agric. 71, 38–49 (2010)CrossRef Ni, J.-Q., Heber, A.J.: An on-site computer system for comprehensive agricultural air quality research. Comput. Electron. Agric. 71, 38–49 (2010)CrossRef
52.
go back to reference Ruiz, M., L′opez, J.M., de Arcas, G., Barrera, E., Melendez, R., Vega, J.: Data reduction in the ITMS system through a data acquisition model with self-adaptive sampling rate. Fusion Eng. Des. 83, 358–362 (2008)CrossRef Ruiz, M., L′opez, J.M., de Arcas, G., Barrera, E., Melendez, R., Vega, J.: Data reduction in the ITMS system through a data acquisition model with self-adaptive sampling rate. Fusion Eng. Des. 83, 358–362 (2008)CrossRef
53.
go back to reference Mekida, S., Vacharanukul, K.: In-process out-of-roundness measurement probe for turned work pieces. Measurement 44, 762–766 (2011)CrossRef Mekida, S., Vacharanukul, K.: In-process out-of-roundness measurement probe for turned work pieces. Measurement 44, 762–766 (2011)CrossRef
54.
go back to reference Giannone, L., et al.: Data acquisition and real-time signal processing of plasma diagnostics on ASDEX upgrade using LabVIEW RT. Fusion Eng. Des. 85, 303–307 (2010)CrossRef Giannone, L., et al.: Data acquisition and real-time signal processing of plasma diagnostics on ASDEX upgrade using LabVIEW RT. Fusion Eng. Des. 85, 303–307 (2010)CrossRef
55.
go back to reference Ionel, R., Vasiu, G., Mischie, S.: GPRS based data acquisition and analysis system with mobile phone control. Measurement 45, 1462–1470 (2012)CrossRef Ionel, R., Vasiu, G., Mischie, S.: GPRS based data acquisition and analysis system with mobile phone control. Measurement 45, 1462–1470 (2012)CrossRef
56.
go back to reference Bera, T.K., Nagaraju, J, Studying the 2D resistivity reconstruction of stainless steel electrode phantoms using different current patterns of electrical impedance tomography (EIT). In: Biomedical Engineering, Narosa Publishing House, Proceeding of the International Conference on Biomedical Engineering 2011 (ICBME-2011), India, 2011, pp. 163–69 Bera, T.K., Nagaraju, J, Studying the 2D resistivity reconstruction of stainless steel electrode phantoms using different current patterns of electrical impedance tomography (EIT). In: Biomedical Engineering, Narosa Publishing House, Proceeding of the International Conference on Biomedical Engineering 2011 (ICBME-2011), India, 2011, pp. 163–69
57.
go back to reference Bera, T.K., Nagaraju, J.: Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT). Measurement 45, 663–682 (2012)CrossRef Bera, T.K., Nagaraju, J.: Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT). Measurement 45, 663–682 (2012)CrossRef
58.
go back to reference Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)CrossRef Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)CrossRef
59.
go back to reference Polydorides, N., Lionheart, W.R.B.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 13, 1871–1883 (2002)CrossRef Polydorides, N., Lionheart, W.R.B.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 13, 1871–1883 (2002)CrossRef
60.
go back to reference Vauhkonen, M., Lionheart, W.R.B., Heikkinen, L.M., Vauhkonen, P.J., Kaipio, J.P.: A MATLAB package for the EIDORS project to reconstruct two dimensional EIT images. Physiol. Meas. 22(107), 111 (2001) Vauhkonen, M., Lionheart, W.R.B., Heikkinen, L.M., Vauhkonen, P.J., Kaipio, J.P.: A MATLAB package for the EIDORS project to reconstruct two dimensional EIT images. Physiol. Meas. 22(107), 111 (2001)
61.
go back to reference Mekida, S., Vacharanukul, K.: In-process out-of-roundness measurement probe for turned workpieces. Measurement 44, 762–766 (2011)CrossRef Mekida, S., Vacharanukul, K.: In-process out-of-roundness measurement probe for turned workpieces. Measurement 44, 762–766 (2011)CrossRef
62.
go back to reference Data Sheet, NI USB 6251 OEM, High-Speed M Series Multifunction Data Acquisition (DAQ) Module, National Instruments, USA Data Sheet, NI USB 6251 OEM, High-Speed M Series Multifunction Data Acquisition (DAQ) Module, National Instruments, USA
63.
go back to reference Data Sheet, NI SCB68, Shielded I/O Connector Block, National Instruments, USA Data Sheet, NI SCB68, Shielded I/O Connector Block, National Instruments, USA
64.
go back to reference Data Sheet, CD4067BE IC, CMOS Analog Multiplesers/Demultiplexers, Texas Instruments Inc., USA (2012) Data Sheet, CD4067BE IC, CMOS Analog Multiplesers/Demultiplexers, Texas Instruments Inc., USA (2012)
65.
go back to reference Bera, T.K., Nagaraju, J.: Surface electrode switching of a 16-electrode wireless EIT system using RF-based digital data transmission scheme with 8 channel encoder/decoder ICs. Measurement 45, 541–555 (2012)CrossRef Bera, T.K., Nagaraju, J.: Surface electrode switching of a 16-electrode wireless EIT system using RF-based digital data transmission scheme with 8 channel encoder/decoder ICs. Measurement 45, 541–555 (2012)CrossRef
66.
go back to reference Cheng, K.S., Simske, S.J., Isaacson, D., Newell, J.C., Gisser, D.G.: Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography. IEEE Trans. Biomed. Eng. 37(60), 60–65 (1990)CrossRef Cheng, K.S., Simske, S.J., Isaacson, D., Newell, J.C., Gisser, D.G.: Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography. IEEE Trans. Biomed. Eng. 37(60), 60–65 (1990)CrossRef
67.
go back to reference Rosell, J., Riu, P.: Common-mode feedback in electrical impedance tomography. Clin. Phys. Physiol. Meas. 13(Suppl. 4), 11–14 (1992)CrossRef Rosell, J., Riu, P.: Common-mode feedback in electrical impedance tomography. Clin. Phys. Physiol. Meas. 13(Suppl. 4), 11–14 (1992)CrossRef
68.
go back to reference Rahal, M., Rida, I., Usman, M., Demosthenous, A.: New techniques to reduce the common-mode signal in multi-frequency EIT applications. In: PIERS Proceedings, Marrakesh, MOROCCO, pp. 1598–1601 (20–23 March 2011) Rahal, M., Rida, I., Usman, M., Demosthenous, A.: New techniques to reduce the common-mode signal in multi-frequency EIT applications. In: PIERS Proceedings, Marrakesh, MOROCCO, pp. 1598–1601 (20–23 March 2011)
Metadata
Title
A LabVIEW Based Data Acquisition System for Electrical Impedance Tomography (EIT)
Authors
Tushar Kanti Bera
J. Nagaraju
Copyright Year
2014
Publisher
Springer India
DOI
https://doi.org/10.1007/978-81-322-1768-8_34

Premium Partner