Skip to main content
Top
Published in: Wireless Personal Communications 2/2024

04-05-2024

A Lightweight Three Dimensional Redeployment Algorithm for Distributed Mobile Wireless Sensor Networks

Authors: Nadia Boufares, Yosra Ben Saied, Leila Azouz Saidane

Published in: Wireless Personal Communications | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, there has been significant growth in mobile wireless sensor networks (WSNs), yet prevailing research has primarily focused on 2D planar deployments, overlooking the importance of three-dimensional (3D) coverage in various applications. This oversight leads to ineffective data gathering due to incomplete area coverage and network connectivity. In previous researches (Boufares et al. in: 2018 31 IEEE/ACS 15th international conference on computer systems and applications (AICCSA), Aqaba, Jordan, pp 1–8, 2018, in: 13th international wireless communications and mobile computing conference (IWCMC), Valencia, pp 1628–1633, 2017, in: IEEE wireless communications and mobile computing conference (IWCMC), Dubrovnik, Croatia, pp 563–568, 2015a, in: the 4th international conference on performance evaluation and modeling in wired and wireless networks (PEMWN), Hammamet, Tunisia, pp 103–108, 2015b), we proposed 3D mobile autonomous redeployment strategies based on the Virtual Forces Algorithm, tailored for diverse configurations: 3D volume applications such as smart homes or agriculture, 3D flat surfaces like snow monitoring, and 3D terrain surfaces like volcano monitoring. Our approach ensured complete coverage and connectivity in these scenarios. Moreover, energy efficiency emerges as a critical concern, given the autonomous and mobile nature of sensor nodes operating on finite battery power. Hence, in this paper, we provide an overview of our previous results, highlighting the efficacy of our 3D mobile autonomous redeployment strategies across various configurations. Subsequently, we delve into an in-depth analysis of the energy consumption associated with the different proposed contributions. Building upon these insights, we propose an energy harvesting approach aimed at extending the operational lifespan of mobile 3D WSNs, thus ensuring sustained functionality in diverse real-world applications.Through these contributions, we address critical challenges and pave the way for improved performance in modern sensor network applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abbaspour, R. (2010). A practical approach to powering wireless sensor nodes by harvesting energy from heat flow in room temperature. In Proceedings of IEEE ICUMT, 2010, 178–181. Abbaspour, R. (2010). A practical approach to powering wireless sensor nodes by harvesting energy from heat flow in room temperature. In Proceedings of IEEE ICUMT, 2010, 178–181.
2.
go back to reference Adu-Manu, K. S., Adam, N., Tapparello, C., Ayatollahi, H., & Heinzelman, W. (2018). Energy-Harvesting Wireless Sensor Networks (EH-WSNs): A Review. ACM Transactions on Sensor Networks (TOSN), 14(2), 10.CrossRef Adu-Manu, K. S., Adam, N., Tapparello, C., Ayatollahi, H., & Heinzelman, W. (2018). Energy-Harvesting Wireless Sensor Networks (EH-WSNs): A Review. ACM Transactions on Sensor Networks (TOSN), 14(2), 10.CrossRef
3.
go back to reference Allard, G., Minet, P., Nguyen, D. Q., & Shresta, N. (2006). “Evaluation of the Energy Consumption in MANET”, Adhoc-Now 2006. Ottawa: Canada. Allard, G., Minet, P., Nguyen, D. Q., & Shresta, N. (2006). “Evaluation of the Energy Consumption in MANET”, Adhoc-Now 2006. Ottawa: Canada.
4.
go back to reference Aslam, N., Robertson, W. (2010) ”Distributed coverage and connectivity in three dimensional wireless sensor networks,” in Proc. ACM IWCMC’10, pp. 1141-1145. Aslam, N., Robertson, W. (2010) ”Distributed coverage and connectivity in three dimensional wireless sensor networks,” in Proc. ACM IWCMC’10, pp. 1141-1145.
5.
go back to reference Ayazian, S., Soenen, E., & Hassibi, A. (2011). A photovoltaic-driven and energy autonomous CMOS implantable sensor. In Proceedings of IEEE VLSIC, 2011, 148–149. Ayazian, S., Soenen, E., & Hassibi, A. (2011). A photovoltaic-driven and energy autonomous CMOS implantable sensor. In Proceedings of IEEE VLSIC, 2011, 148–149.
6.
go back to reference Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.H. (2006) ”Deploying Wireless Sensors to Achieve Both Coverage and Connectivity”. Proceedings of the ACM international symposium on mobile ad hoc networking and computing (MobiHoc); Florence, Italy. pp. 22-25. Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.H. (2006) ”Deploying Wireless Sensors to Achieve Both Coverage and Connectivity”. Proceedings of the ACM international symposium on mobile ad hoc networking and computing (MobiHoc); Florence, Italy. pp. 22-25.
7.
go back to reference Barnes, M., Conway, C., Mathews, J., & Arvind, D. K. (2010). ENS: An energy harvesting wireless sensor network platform. In Proceedings of ICSNC, 2010, 83–87. Barnes, M., Conway, C., Mathews, J., & Arvind, D. K. (2010). ENS: An energy harvesting wireless sensor network platform. In Proceedings of ICSNC, 2010, 83–87.
8.
go back to reference Basagni, S., Naderi, M. Y., Petrioli, C., & Spenza, D. (2013). Mobile Ad Hoc Networking: The Cutting Edge Direction, Chapter 20: “Wireless Sensor Networks with Energy Harvesting” (pp. 701–736). Hoboken, NJ, USA: Wiley. Basagni, S., Naderi, M. Y., Petrioli, C., & Spenza, D. (2013). Mobile Ad Hoc Networking: The Cutting Edge Direction, Chapter 20: “Wireless Sensor Networks with Energy Harvesting” (pp. 701–736). Hoboken, NJ, USA: Wiley.
9.
go back to reference Bhuvaneswari, R., & Bejoy, B.J. (2011) ”Energy efficient reliable transport protocol for re-tasking in wireless sensor network,” in Proceedings of the national conference on innovations in emerging technology (NCOIET ’11), pp. 1-6. Bhuvaneswari, R., & Bejoy, B.J. (2011) ”Energy efficient reliable transport protocol for re-tasking in wireless sensor network,” in Proceedings of the national conference on innovations in emerging technology (NCOIET ’11), pp. 1-6.
10.
go back to reference Boufares, N., Ben Saied, Y., & Saidane, L.A. (2018) ”Improved Distributed Virtual Forces Algorithm for 3D Terrains Coverage in Mobile Wireless Sensor Networks,” 2018 IEEE/ACS 15th international conference on computer systems and applications (AICCSA), Aqaba, Jordan, pp. 1-8, Boufares, N., Ben Saied, Y., & Saidane, L.A. (2018) ”Improved Distributed Virtual Forces Algorithm for 3D Terrains Coverage in Mobile Wireless Sensor Networks,” 2018 IEEE/ACS 15th international conference on computer systems and applications (AICCSA), Aqaba, Jordan, pp. 1-8,
11.
go back to reference Boufares, N., Khoufi, I., Minet, P., Saidane, L. (2015) ”3D Surface Covering with Virtual Forces,” in The 4th international conference on performance evaluation and modeling in wired and wireless networks (PEMWN), Hammamet, Tunisia, November, pp. 103-108 Boufares, N., Khoufi, I., Minet, P., Saidane, L. (2015) ”3D Surface Covering with Virtual Forces,” in The 4th international conference on performance evaluation and modeling in wired and wireless networks (PEMWN), Hammamet, Tunisia, November, pp. 103-108
12.
go back to reference Boufares, N., Khoufi, I., Minet, P., Saidane, L., & Ben, Y. (2015) Saied,”Three dimensional mobile wireless sensor networks redeployment based on virtual forces”, IEEE wireless communications and mobile computing conference (IWCMC), Dubrovnik, Croatia, pp. 563–568. Boufares, N., Khoufi, I., Minet, P., Saidane, L., & Ben, Y. (2015) Saied,”Three dimensional mobile wireless sensor networks redeployment based on virtual forces”, IEEE wireless communications and mobile computing conference (IWCMC), Dubrovnik, Croatia, pp. 563–568.
13.
go back to reference Boufares, N., Minet, P., Khoufi, I., Saidane, L. (2017) ”Covering a 3D flat surface with autonomous and mobile wireless sensor nodes,” 13th international wireless communications and mobile computing conference (IWCMC), Valencia, pp. 628-1633. Boufares, N., Minet, P., Khoufi, I., Saidane, L. (2017) ”Covering a 3D flat surface with autonomous and mobile wireless sensor nodes,” 13th international wireless communications and mobile computing conference (IWCMC), Valencia, pp. 628-1633.
14.
go back to reference Challa, V. R., Prasad, M. G., & Fisher, F. T. (2011). Towards an autonomous self- tuning vibration energy harvesting device for wireless sensor network applications. Journal of Smart Materials and Structures, 20(2), 1–11.CrossRef Challa, V. R., Prasad, M. G., & Fisher, F. T. (2011). Towards an autonomous self- tuning vibration energy harvesting device for wireless sensor network applications. Journal of Smart Materials and Structures, 20(2), 1–11.CrossRef
15.
go back to reference Chen, G.-M., Ma, L.-Y., Huang, I.-Y., Wu, T.-E. (2011) ”Development of a novel transparent micro-thermoelectric generator for solar energy conversion,” in Proceedings of the 6th IEEE international conference on nano/micro engineered and molecular systems (NEMS ’11), pp. 976-979. Chen, G.-M., Ma, L.-Y., Huang, I.-Y., Wu, T.-E. (2011) ”Development of a novel transparent micro-thermoelectric generator for solar energy conversion,” in Proceedings of the 6th IEEE international conference on nano/micro engineered and molecular systems (NEMS ’11), pp. 976-979.
16.
go back to reference Chen, Y., Vasic, D., Costa, F., Wu, W., Lee. C.K. (2010) Self-powered piezoelectric energy harvesting device using velocity control synchronized switching technique. In Proceedings of IEEE IECON 2010, pp. 1785-1790, Phoenix, AZ, November 7-10 2010. Chen, Y., Vasic, D., Costa, F., Wu, W., Lee. C.K. (2010) Self-powered piezoelectric energy harvesting device using velocity control synchronized switching technique. In Proceedings of IEEE IECON 2010, pp. 1785-1790, Phoenix, AZ, November 7-10 2010.
17.
go back to reference Chen, Y., Wang, Q., Gupchup, J., & Terzis, A. (2010). Tempo: An energy harvesting mote resilient to power outages. In Proceedings of IEEE LCN, 2010, 933–934. Chen, Y., Wang, Q., Gupchup, J., & Terzis, A. (2010). Tempo: An energy harvesting mote resilient to power outages. In Proceedings of IEEE LCN, 2010, 933–934.
18.
go back to reference Culler, D., Estrin, D., Srivastava, M. (2004) ”Overview of Sensor Networks”, IEEE Computer Culler, D., Estrin, D., Srivastava, M. (2004) ”Overview of Sensor Networks”, IEEE Computer
19.
go back to reference Dash, S., Swain, A.R., Ajay, A. (2012) ”Reliable energy aware multi-token based MAC protocol for WSN,” in Proceedings of the 26th IEEE international conference on advanced information networking and applications (AINA ’12), pp. 144-151. Dash, S., Swain, A.R., Ajay, A. (2012) ”Reliable energy aware multi-token based MAC protocol for WSN,” in Proceedings of the 26th IEEE international conference on advanced information networking and applications (AINA ’12), pp. 144-151.
20.
go back to reference Denisov, A., Yeatman, E. (2011) Stepwise microactuators powered by ultrasonic transfer. In Proceedings of the Eurosensors XXV, Athens, Greece. Denisov, A., Yeatman, E. (2011) Stepwise microactuators powered by ultrasonic transfer. In Proceedings of the Eurosensors XXV, Athens, Greece.
21.
go back to reference Feeney, L.M. (2004) ”Energy Efficient Communication in Ad Hoc Wireless Networks” technical report, Swedish Inst. of Computer Science (SICS), Draft Chapter. Feeney, L.M. (2004) ”Energy Efficient Communication in Ad Hoc Wireless Networks” technical report, Swedish Inst. of Computer Science (SICS), Draft Chapter.
22.
go back to reference Fei, F., Mai, J. D., & Li, W. J. (2012). A wind-flutter energy converter for powering wireless sensors. Sensors and Actuators, A: Physical, 173(1), 163171.CrossRef Fei, F., Mai, J. D., & Li, W. J. (2012). A wind-flutter energy converter for powering wireless sensors. Sensors and Actuators, A: Physical, 173(1), 163171.CrossRef
23.
go back to reference Francioso, L., De Pascali, C., Farella, I. et al. (2010) ”Flexible thermoelectric generator for wearable biometric sensors,” in Proceedings of the 9th IEEE Sensors Conference (SENSORS ’10), pp. 747-750 Francioso, L., De Pascali, C., Farella, I. et al. (2010) ”Flexible thermoelectric generator for wearable biometric sensors,” in Proceedings of the 9th IEEE Sensors Conference (SENSORS ’10), pp. 747-750
24.
go back to reference Grossi, M. (2021). Energy harvesting strategies for wireless sensor networks and mobile devices: A review. Electronics, 10, 661.CrossRef Grossi, M. (2021). Energy harvesting strategies for wireless sensor networks and mobile devices: A review. Electronics, 10, 661.CrossRef
25.
go back to reference Han, S., Zhang, Y., Xu, G. (2010) ”Hexagonal grid-based sensor deployment algorithm”, Control and Decision Conference, Chinese. Han, S., Zhang, Y., Xu, G. (2010) ”Hexagonal grid-based sensor deployment algorithm”, Control and Decision Conference, Chinese.
26.
go back to reference Hande, A., & Cem, Ersoy. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54(15), 2688–2710.CrossRef Hande, A., & Cem, Ersoy. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54(15), 2688–2710.CrossRef
27.
go back to reference He, C., Arora, A., Kiziroglou, M.E., Yates, D.C., O’Hare, D., Yeatman, E.M. (2009) MEMS energy harvesting powered wireless biometric sensor. In Proceedings of BSN 2009, pp 207-212, Berkeley, CA, 3-5. He, C., Arora, A., Kiziroglou, M.E., Yates, D.C., O’Hare, D., Yeatman, E.M. (2009) MEMS energy harvesting powered wireless biometric sensor. In Proceedings of BSN 2009, pp 207-212, Berkeley, CA, 3-5.
28.
go back to reference Heer, R., Wissenwasser, J., Milnera, M., Farmer, L., Höpfner, C., & Vellekoop, M. (2010). Wireless powered electronic sensors for biological applications. In Proceedings of IEEE EMBC, 2010, 700–703. Heer, R., Wissenwasser, J., Milnera, M., Farmer, L., Höpfner, C., & Vellekoop, M. (2010). Wireless powered electronic sensors for biological applications. In Proceedings of IEEE EMBC, 2010, 700–703.
29.
go back to reference Kandris, D., Nakas, C., Vomvas, D., & Koulouras, G. (2020). Applications of wireless sensor networks: An up-to-date survey. Applied System Innovation, 3, 14.CrossRef Kandris, D., Nakas, C., Vomvas, D., & Koulouras, G. (2020). Applications of wireless sensor networks: An up-to-date survey. Applied System Innovation, 3, 14.CrossRef
30.
go back to reference Khalifeh, A., Darabkh, K. A., Khasawneh, A. M., Alqaisieh, I., Salameh, M., AlAbdala, A., Alrubaye, S., Alassaf, A., Al-HajAli, S., Al-Wardat, R., et al. (2021). Wireless sensor networks for smart cities: Network design, implementation and performance evaluation. Electronics, 10, 21.CrossRef Khalifeh, A., Darabkh, K. A., Khasawneh, A. M., Alqaisieh, I., Salameh, M., AlAbdala, A., Alrubaye, S., Alassaf, A., Al-HajAli, S., Al-Wardat, R., et al. (2021). Wireless sensor networks for smart cities: Network design, implementation and performance evaluation. Electronics, 10, 21.CrossRef
31.
go back to reference Kiziroglou, M. E., He, C., & Yeatman, E. M. (2010). Flexible substrate electrostatic energy harvester. IEEE Electronics Letters, 46(2), 166–167.CrossRef Kiziroglou, M. E., He, C., & Yeatman, E. M. (2010). Flexible substrate electrostatic energy harvester. IEEE Electronics Letters, 46(2), 166–167.CrossRef
32.
go back to reference Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.CrossRef Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.CrossRef
33.
go back to reference Lu, X., & Yang, S.-H. (2010). Thermal energy harvesting for WSN’s. In Proceedings of IEEE SMC, 2010, 3045–3052. Lu, X., & Yang, S.-H. (2010). Thermal energy harvesting for WSN’s. In Proceedings of IEEE SMC, 2010, 3045–3052.
34.
go back to reference Mahfoudh, S., Khoufi, I., Minet, P., Laouiti, A. (2014) ”GDVFA: a distributed algorithm based on grid and virtual forces for the redeployment of WSNs,” in Proceedings of the IEEE wireless communications and networking conference (WCNC ’14),pp. 3040-3045, Istanbul, Turkey Mahfoudh, S., Khoufi, I., Minet, P., Laouiti, A. (2014) ”GDVFA: a distributed algorithm based on grid and virtual forces for the redeployment of WSNs,” in Proceedings of the IEEE wireless communications and networking conference (WCNC ’14),pp. 3040-3045, Istanbul, Turkey
35.
go back to reference Mandal, S., Turicchia, L., & Sarpeshkar, R. (2010). A low-power, battery-free tag for body sensor networks. IEEE Pervasive Computing, 9(1), 71–77.CrossRef Mandal, S., Turicchia, L., & Sarpeshkar, R. (2010). A low-power, battery-free tag for body sensor networks. IEEE Pervasive Computing, 9(1), 71–77.CrossRef
36.
go back to reference Mougou, K., Mahfoudh, S., Minet, P., Laouiti, A. (2012) ”Redeployment of Randomly Deployed Wireless Mobile Sensor Nodes” IEEE VTC Mougou, K., Mahfoudh, S., Minet, P., Laouiti, A. (2012) ”Redeployment of Randomly Deployed Wireless Mobile Sensor Nodes” IEEE VTC
37.
go back to reference Mplemenos, G.-G., Papaefstathiou, I. (2012) ”Fast and power-efficient hardware implementation of a routing scheme for WSNs,” in Proceedings of the IEEE wireless communications and networking conference (WCNC ’12), pp. 1710-1714. Mplemenos, G.-G., Papaefstathiou, I. (2012) ”Fast and power-efficient hardware implementation of a routing scheme for WSNs,” in Proceedings of the IEEE wireless communications and networking conference (WCNC ’12), pp. 1710-1714.
38.
go back to reference Nacef, A.B., Senouci, S.-M., Ghamri-Doudane, Y., Beylot, A.-L. (2011) ”A cooperative low power Mac protocol for wireless sensor networks,” in Proceedings of the IEEE international conference on communications (ICC ’11), pp. 1-6. Nacef, A.B., Senouci, S.-M., Ghamri-Doudane, Y., Beylot, A.-L. (2011) ”A cooperative low power Mac protocol for wireless sensor networks,” in Proceedings of the IEEE international conference on communications (ICC ’11), pp. 1-6.
39.
go back to reference Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef
40.
go back to reference Park, J. C., Bang, D. H., & Park, J. Y. (2010). Micro-fabricated electromagnetic power generator to scavenge low ambient vibration. IEEE Transactions on Magnetics, 46(6), 1937–1942.CrossRef Park, J. C., Bang, D. H., & Park, J. Y. (2010). Micro-fabricated electromagnetic power generator to scavenge low ambient vibration. IEEE Transactions on Magnetics, 46(6), 1937–1942.CrossRef
41.
go back to reference Pobering, S., & Schwesinger, N. (2004) ”A novel hydropower harvesting device,” in Proceedings of the international conference on MEMS, NANO and smart systems (ICMENS ’04), pp. 480-485. Pobering, S., & Schwesinger, N. (2004) ”A novel hydropower harvesting device,” in Proceedings of the international conference on MEMS, NANO and smart systems (ICMENS ’04), pp. 480-485.
42.
go back to reference Postolache, O., Pereira, J. D., & Silva Girao, P. (2014). Wireless sensor network- based solution for environmental monitoring: water quality assessment case study. IET Science, Measurement and Technology, 8, 610–616.CrossRef Postolache, O., Pereira, J. D., & Silva Girao, P. (2014). Wireless sensor network- based solution for environmental monitoring: water quality assessment case study. IET Science, Measurement and Technology, 8, 610–616.CrossRef
43.
go back to reference Rocha, J. G., Goncalves, L. M., Rocha, P. F., Silva, M. P., & Lanceros-Mendez, S. (2010). Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Transactions on Industrial Electronics, 57(3), 813–819.CrossRef Rocha, J. G., Goncalves, L. M., Rocha, P. F., Silva, M. P., & Lanceros-Mendez, S. (2010). Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Transactions on Industrial Electronics, 57(3), 813–819.CrossRef
44.
go back to reference Sadeghi Ghahroudi, M., Shahrabi, A., Ghoreyshi, S. M., & Alfouzan, F. A. (2023). Distributed node deployment algorithms in mobile wireless sensor networks: survey and challenges. ACM Transactions on Sensor Networks, 19(4), 1–26.CrossRef Sadeghi Ghahroudi, M., Shahrabi, A., Ghoreyshi, S. M., & Alfouzan, F. A. (2023). Distributed node deployment algorithms in mobile wireless sensor networks: survey and challenges. ACM Transactions on Sensor Networks, 19(4), 1–26.CrossRef
45.
go back to reference Sherrit, S. (2008) ”The Physical acoustics of energy harvesting,” in Proceedings of the IEEE international ultrasonics symposium (IUS ’08), pp. 10461055. Sherrit, S. (2008) ”The Physical acoustics of energy harvesting,” in Proceedings of the IEEE international ultrasonics symposium (IUS ’08), pp. 10461055.
46.
go back to reference Singh, J., Kaur, R., & Singh, D. (2021). Energy harvesting in wireless sensor networks: A taxonomic survey. International Journal of Energy Research, 45, 118–140.CrossRef Singh, J., Kaur, R., & Singh, D. (2021). Energy harvesting in wireless sensor networks: A taxonomic survey. International Journal of Energy Research, 45, 118–140.CrossRef
47.
go back to reference Sun, J., Hu, J.-H. (2011) ”Experimental study on a vibratory generator based on impact of water current,” in Proceedings of the symposium on piezoelectricity, acoustic waves, and device applications (SPAWDA ’11), pp. 40-43. Sun, J., Hu, J.-H. (2011) ”Experimental study on a vibratory generator based on impact of water current,” in Proceedings of the symposium on piezoelectricity, acoustic waves, and device applications (SPAWDA ’11), pp. 40-43.
48.
go back to reference Tan, Y. K., & Panda, S. K. (2011). Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread. IEEE Transactions on Instrumentation and Measurement, 60(4), 1367–1377.CrossRef Tan, Y. K., & Panda, S. K. (2011). Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread. IEEE Transactions on Instrumentation and Measurement, 60(4), 1367–1377.CrossRef
49.
go back to reference Tao, L., Feng, L. (2009) ”Power-efficient clustering routing protocol based on applications in wireless sensor network,” in Proceedings of the 5th international conference on wireless communications, networking and mobile computing (WiCOM’09), pp. 1-6. Tao, L., Feng, L. (2009) ”Power-efficient clustering routing protocol based on applications in wireless sensor network,” in Proceedings of the 5th international conference on wireless communications, networking and mobile computing (WiCOM’09), pp. 1-6.
50.
go back to reference Yick, J., Mukherjee, B., & Ghosal, Dipak. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, Dipak. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
51.
go back to reference Zhang, R., Ho, C.K. (2012) ”MIMO broadcasting for simultaneous wireless information and power transfer,” accepted in IEEE Trans. Wireless Commun., [Online]. Available: http://arxiv.org/abs/1105.4999 Zhang, R., Ho, C.K. (2012) ”MIMO broadcasting for simultaneous wireless information and power transfer,” accepted in IEEE Trans. Wireless Commun., [Online]. Available: http://​arxiv.​org/​abs/​1105.​4999
52.
go back to reference Zhou, G., Huang, L., Li, W., Zhu, Z. (2014) ”Harvesting ambient environmental energy for wireless sensor networks: A survey”, Journal of Sensors, vol. 2014. Zhou, G., Huang, L., Li, W., Zhu, Z. (2014) ”Harvesting ambient environmental energy for wireless sensor networks: A survey”, Journal of Sensors, vol. 2014.
53.
go back to reference Zhou, H.-Y., Wu, F., Hou, K.-M. (2008) ”An event-driven multi-threading real-time operating system dedicated to wireless sensor networks,” in Proceedings of the international conference on embedded software and systems (ICESS ’08), pp. 3-12 Zhou, H.-Y., Wu, F., Hou, K.-M. (2008) ”An event-driven multi-threading real-time operating system dedicated to wireless sensor networks,” in Proceedings of the international conference on embedded software and systems (ICESS ’08), pp. 3-12
54.
go back to reference Zhu, Y., Moheimani, S. O. R., & Yuce, M. R. (2011). A 2-DOF MEMS ultrasonic energy harvester. IEEE Sensors Journal, 11(1), 155–161.CrossRef Zhu, Y., Moheimani, S. O. R., & Yuce, M. R. (2011). A 2-DOF MEMS ultrasonic energy harvester. IEEE Sensors Journal, 11(1), 155–161.CrossRef
55.
go back to reference Zorlu, O., Topal, E. T., & Küandlah, H. (2011). A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sensors Journal, 11(2), 481–488.CrossRef Zorlu, O., Topal, E. T., & Küandlah, H. (2011). A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sensors Journal, 11(2), 481–488.CrossRef
56.
go back to reference Zou, Y., & Chakrabarty, K. (2003) ”Sensor Deployment and Target Localization Based on Virtual Forces” IEEE INFOCOM. Zou, Y., & Chakrabarty, K. (2003) ”Sensor Deployment and Target Localization Based on Virtual Forces” IEEE INFOCOM.
Metadata
Title
A Lightweight Three Dimensional Redeployment Algorithm for Distributed Mobile Wireless Sensor Networks
Authors
Nadia Boufares
Yosra Ben Saied
Leila Azouz Saidane
Publication date
04-05-2024
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2024
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-11078-3

Other articles of this Issue 2/2024

Wireless Personal Communications 2/2024 Go to the issue