Skip to main content
Top

2024 | OriginalPaper | Chapter

A Mathematical Study of Reproduction Number and Its Control Strategies in Some Early Epidemic and Corona-Virus Epidemic Model

Authors : Abhishek Sarkar, Kulbhushan Agnihotri, Krishna Pada Das

Published in: Advances in Mathematical Modelling, Applied Analysis and Computation

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The new virus, COVID-19, spread quickly throughout Wuhan, China, other regions of China, and adjacent countries after the first case of unknown origin surfaced at Jinyintan Hospital in Wuhan, China, in December 2019. We developed epidemiological models and time models to estimate the incidence and short-term spread of COVID-19. This will enable institutions at all levels in China to respond and prevent COVID-19, while freeing up more time for clinical research. In the SIR and SI model, the main reproduction number is calculated analytically. The new generation matrix allows us to calculate the initial production number \(R_0\) according to the SEIR corona model, and the results show that with \(R_01\) the coronavirus does not spread in the body, but with \(R_0\) cannot less then 1. The disease will spread throughout society. The overall sensitivity and adaptability of the critical number of births are examined. Prevention and contamination are also covered and we use simple print codes as a guide. We analyzed past epidemic models such as West Nile virus and Zika virus using the next-generation matrix. Finally, we examined two coronavirus samples and determined the production number. It turns out that the distinction does not matter when the system is clogged. However, if the isolation rate is above the critical value, infection will not occur in the community. We showed the daily spread of coronavirus using some data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gumel, A.B., et al.: Modelling strategies for controlling SARS outbreaks. Proc. Roy. Soc. Lond. Ser. B: Biol. Sci 271(1554), 2223–2232 (2004)CrossRef Gumel, A.B., et al.: Modelling strategies for controlling SARS outbreaks. Proc. Roy. Soc. Lond. Ser. B: Biol. Sci 271(1554), 2223–2232 (2004)CrossRef
2.
go back to reference Adler, S.E.: Why Coronaviruses Hit Older Adults Hardest. AARP (2020) Adler, S.E.: Why Coronaviruses Hit Older Adults Hardest. AARP (2020)
3.
go back to reference Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62(2), 229–243 (1994)CrossRef Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62(2), 229–243 (1994)CrossRef
4.
go back to reference Bacar, N., Guernaoui, S.: The epidemic threshold of vector-borne dis- eases with seasonality the case of cutaneous leishmaniasis in Chichaoua. Morocco. J. Math. Biol. 53, 421436 (2006) Bacar, N., Guernaoui, S.: The epidemic threshold of vector-borne dis- eases with seasonality the case of cutaneous leishmaniasis in Chichaoua. Morocco. J. Math. Biol. 53, 421436 (2006)
5.
go back to reference Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T.: Preliminary epidemiologic assessment of merscov outbreak in South Korea. Euro Surveillance: Bulletin Europeen sur les maladies transmissibles European communicable disease bulletin 20(25) (2015) Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T.: Preliminary epidemiologic assessment of merscov outbreak in South Korea. Euro Surveillance: Bulletin Europeen sur les maladies transmissibles European communicable disease bulletin 20(25) (2015)
6.
go back to reference Bowman, C., Gumel, A.B., van den Driessche, P., Wu, J., Zhu, H.: A mathematical model for assessing control strategies against West Nile virus. Bull. Math. Biol. 67(5), 1107–1133 (2005)MathSciNetCrossRef Bowman, C., Gumel, A.B., van den Driessche, P., Wu, J., Zhu, H.: A mathematical model for assessing control strategies against West Nile virus. Bull. Math. Biol. 67(5), 1107–1133 (2005)MathSciNetCrossRef
7.
go back to reference Cai, L., Li, X., Tuncer, N., Mart-Cheva, M., Lashari, A.A.: Optimal control of a malaria model with asymptomatic class and superinfection. Math. Biosci. 288, 94–108 (2017)MathSciNetCrossRef Cai, L., Li, X., Tuncer, N., Mart-Cheva, M., Lashari, A.A.: Optimal control of a malaria model with asymptomatic class and superinfection. Math. Biosci. 288, 94–108 (2017)MathSciNetCrossRef
9.
go back to reference Huang, C., et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497–506 (2020)CrossRef Huang, C., et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497–506 (2020)CrossRef
10.
go back to reference Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Numerical investigation of fractional model of phytoplankton-toxic phytoplankton-zooplankton system with convergence analysis. Int. J. Biomath. 15(04), 2250006 (2022)MathSciNetCrossRef Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Numerical investigation of fractional model of phytoplankton-toxic phytoplankton-zooplankton system with convergence analysis. Int. J. Biomath. 15(04), 2250006 (2022)MathSciNetCrossRef
11.
go back to reference Dubey, V.P., Dubey, S., Kumar, D., Singh, J.: A computational study of fractional model of atmospheric dynamics of carbon dioxide gas. Chaos, Solitons Fractals 142, 110375 (2021)MathSciNetCrossRef Dubey, V.P., Dubey, S., Kumar, D., Singh, J.: A computational study of fractional model of atmospheric dynamics of carbon dioxide gas. Chaos, Solitons Fractals 142, 110375 (2021)MathSciNetCrossRef
12.
go back to reference Dubey, S., Dubey, V.P., Singh, J., Alshehri, A.M., Kumar, D.: Computational study of a local fractional Tricomi equation occurring in fractal transonic flow. J. Comput. Nonlinear Dyn. 17(8), 081006 (2022)CrossRef Dubey, S., Dubey, V.P., Singh, J., Alshehri, A.M., Kumar, D.: Computational study of a local fractional Tricomi equation occurring in fractal transonic flow. J. Comput. Nonlinear Dyn. 17(8), 081006 (2022)CrossRef
13.
go back to reference Kumar, D., Dubey, V.P., Dubey, S., Singh, J., Alshehri, A.M.: Computational analysis of local fractional partial differential equations in realm of fractal calculus. Chaos, Solitons Fractals 167, 113009 (2023)MathSciNetCrossRef Kumar, D., Dubey, V.P., Dubey, S., Singh, J., Alshehri, A.M.: Computational analysis of local fractional partial differential equations in realm of fractal calculus. Chaos, Solitons Fractals 167, 113009 (2023)MathSciNetCrossRef
14.
go back to reference Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio RO in the models for infectious disease in heterogeneous populations. J. Math. Biol. 28, 365382 (1990)CrossRef Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio RO in the models for infectious disease in heterogeneous populations. J. Math. Biol. 28, 365382 (1990)CrossRef
15.
go back to reference Dubey, V. P., Kumar, D., Dubey, S.: A modified computational scheme and convergence analysis for fractional order hepatitis E virus model. In: Advanced Numerical Methods for Differential Equations, pp. 279–312. CRC Press (2021) Dubey, V. P., Kumar, D., Dubey, S.: A modified computational scheme and convergence analysis for fractional order hepatitis E virus model. In: Advanced Numerical Methods for Differential Equations, pp. 279–312. CRC Press (2021)
17.
go back to reference Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique. Chaos, Solitons Fractals 164, 112691 (2022)MathSciNetCrossRef Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique. Chaos, Solitons Fractals 164, 112691 (2022)MathSciNetCrossRef
18.
go back to reference Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Analysis and fractal dynamics of local fractional partial differential equations occurring in physical sciences. J. Comput. Nonlinear Dyn. 18(3), 031001 (2023)CrossRef Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Analysis and fractal dynamics of local fractional partial differential equations occurring in physical sciences. J. Comput. Nonlinear Dyn. 18(3), 031001 (2023)CrossRef
19.
go back to reference de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J.: SARS and MERS: recent insights into emerging coronaviruses. Nature Rev. Microbiol. 14(8), 523 (2016)CrossRef de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J.: SARS and MERS: recent insights into emerging coronaviruses. Nature Rev. Microbiol. 14(8), 523 (2016)CrossRef
21.
go back to reference Inaba, H.: A semigroup approach to the strong ergodic theorem of the multistate stabile population process. Math. Popul. Stud. 1, 49–77 (1988)CrossRef Inaba, H.: A semigroup approach to the strong ergodic theorem of the multistate stabile population process. Math. Popul. Stud. 1, 49–77 (1988)CrossRef
22.
go back to reference Chan, J.F.-W., et al.: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223), 514–523 (2020)CrossRef Chan, J.F.-W., et al.: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223), 514–523 (2020)CrossRef
23.
go back to reference Jiang, J., Qiu, Z., Wu, J., Zhu, H.: Threshold conditions for West Nile virus outbreaks. Bull. Math. Biol. 71(3), 627–647 (2009)MathSciNetCrossRef Jiang, J., Qiu, Z., Wu, J., Zhu, H.: Threshold conditions for West Nile virus outbreaks. Bull. Math. Biol. 71(3), 627–647 (2009)MathSciNetCrossRef
24.
go back to reference Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S.: Middle east respiratory syndrome coronavirus (mers-cov) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications. J. Hosp. Infect. 95(2), 207–213 (2017)CrossRef Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S.: Middle east respiratory syndrome coronavirus (mers-cov) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications. J. Hosp. Infect. 95(2), 207–213 (2017)CrossRef
25.
go back to reference Kwok, K.O., Tang, A., Wei, V.W.I., Park, W.H., Yeoh, E.K., Riley, S.: Epidemic models of contact tracing: systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome. Comput. Struct. Biotechnol. J. (2019) Kwok, K.O., Tang, A., Wei, V.W.I., Park, W.H., Yeoh, E.K., Riley, S.: Epidemic models of contact tracing: systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome. Comput. Struct. Biotechnol. J. (2019)
26.
go back to reference Gralinski, L.E., Menachery, V.D.: Return of the coronavirus: 2019-ncov. Viruses 12(2), 135 (2020)CrossRef Gralinski, L.E., Menachery, V.D.: Return of the coronavirus: 2019-ncov. Viruses 12(2), 135 (2020)CrossRef
27.
go back to reference Manore, C., Hickmann, K.S., Xu, S., Hyman, H.J.: Comparing dengue and chikungunya emergence and endemic transmission in A. Aegypti and A. Albopictus. J. Theor. Biol. 356, 174–191 (2014)MathSciNetCrossRef Manore, C., Hickmann, K.S., Xu, S., Hyman, H.J.: Comparing dengue and chikungunya emergence and endemic transmission in A. Aegypti and A. Albopictus. J. Theor. Biol. 356, 174–191 (2014)MathSciNetCrossRef
28.
go back to reference Mizumoto, K., Kagaya, K., Chowell, G.: Early epidemiological assessment of the transmission potential and virulence of 2019 Novel Coronavirus in Wuhan City: China, 2019-2020. medRxiv 2020:2020.02.12.20022434 Mizumoto, K., Kagaya, K., Chowell, G.: Early epidemiological assessment of the transmission potential and virulence of 2019 Novel Coronavirus in Wuhan City: China, 2019-2020. medRxiv 2020:2020.02.12.20022434
30.
go back to reference Ogden, N.H., Radojevic, M., Wu, X., Duvvuri, V.R., Leighton, P.A., Wu, J.: Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ. Health Perspect. 122(6), 631 (2014)CrossRef Ogden, N.H., Radojevic, M., Wu, X., Duvvuri, V.R., Leighton, P.A., Wu, J.: Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ. Health Perspect. 122(6), 631 (2014)CrossRef
31.
go back to reference de Groot, R.J., et al.: Commentary: middle east respiratory syndrome coronavirus (mers-cov): announcement of the coronavirus study group. J. Virol. 87(14), 7790–7792 (2013)CrossRef de Groot, R.J., et al.: Commentary: middle east respiratory syndrome coronavirus (mers-cov): announcement of the coronavirus study group. J. Virol. 87(14), 7790–7792 (2013)CrossRef
32.
go back to reference Roberts, M.G., Heesterbeek, J.A.P.: A new method for estimating the effort required to control an infectious disease. Proc. Roy. Soc. Lond. B: Biol. Sci. 270(1522), 1359–1364 (2003)CrossRef Roberts, M.G., Heesterbeek, J.A.P.: A new method for estimating the effort required to control an infectious disease. Proc. Roy. Soc. Lond. B: Biol. Sci. 270(1522), 1359–1364 (2003)CrossRef
33.
go back to reference Saldaña, F., Barradas, I.: Control strategies in multigroup models: the case of the star network topology. Bull. Math. Biol. 80(11), 2978–3001 (2018)MathSciNetCrossRef Saldaña, F., Barradas, I.: Control strategies in multigroup models: the case of the star network topology. Bull. Math. Biol. 80(11), 2978–3001 (2018)MathSciNetCrossRef
34.
go back to reference Zhou, T., et al.: Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-ncov. J. Evidence- Based Med. (2020) Zhou, T., et al.: Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-ncov. J. Evidence- Based Med. (2020)
35.
go back to reference Taylor, R.A., Mordecai, E.A., Gilligan, C.A., Rohr, J.R., Johnson, L.R.: Mathematical models are a powerful method to understand and control the spread of Huanglongbing. PerrJ. J. Life Environ. Sci. 4, Article ID 2642 (2016). https://doi.org/10.7717/peerj.26-12 Taylor, R.A., Mordecai, E.A., Gilligan, C.A., Rohr, J.R., Johnson, L.R.: Mathematical models are a powerful method to understand and control the spread of Huanglongbing. PerrJ. J. Life Environ. Sci. 4, Article ID 2642 (2016). https://​doi.​org/​10.​7717/​peerj.​26-12
36.
go back to reference Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)MathSciNetCrossRef Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)MathSciNetCrossRef
37.
go back to reference Van den Driessche, P., Wat Mough, J.: Reproductive numbers and sub- threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002) Van den Driessche, P., Wat Mough, J.: Reproductive numbers and sub- threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)
38.
go back to reference Wang, Y., Zhou, Y., Brauer, F., Heffernan, J.M.: Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J. Math. Biol. 67(4), 901–934 (2013)MathSciNetCrossRef Wang, Y., Zhou, Y., Brauer, F., Heffernan, J.M.: Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J. Math. Biol. 67(4), 901–934 (2013)MathSciNetCrossRef
39.
go back to reference Wang, W., Zhao, X.Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20, 699–717 (2008)MathSciNetCrossRef Wang, W., Zhao, X.Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20, 699–717 (2008)MathSciNetCrossRef
40.
go back to reference Wang, W., Zhao, X.Q.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)MathSciNetCrossRef Wang, W., Zhao, X.Q.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)MathSciNetCrossRef
41.
go back to reference Wang, X., Zhao, X.-Q.: Dynamics of a time-delayed Lyme disease model with seasonality. SIAM J. Appl. Dyn. Syst. 16(2), 853–881 (2017)MathSciNetCrossRef Wang, X., Zhao, X.-Q.: Dynamics of a time-delayed Lyme disease model with seasonality. SIAM J. Appl. Dyn. Syst. 16(2), 853–881 (2017)MathSciNetCrossRef
42.
go back to reference Li, W., et al.: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965), 450–454 (2003)CrossRef Li, W., et al.: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965), 450–454 (2003)CrossRef
45.
go back to reference Zhang, T., Meng, X., Zhang, T.: Global dynamics of a virus dynamical model with cell-to-cell transmission and cure rate. Comput. Math. Methods Med. 2015, 45–48 (2015)MathSciNetCrossRef Zhang, T., Meng, X., Zhang, T.: Global dynamics of a virus dynamical model with cell-to-cell transmission and cure rate. Comput. Math. Methods Med. 2015, 45–48 (2015)MathSciNetCrossRef
46.
go back to reference Zhao, X.Q.: Basic reproduction ratios for periodic compartmental models with time delay. J. Dyn. Differ. Equ. 29, 67–82 (2017)MathSciNetCrossRef Zhao, X.Q.: Basic reproduction ratios for periodic compartmental models with time delay. J. Dyn. Differ. Equ. 29, 67–82 (2017)MathSciNetCrossRef
47.
go back to reference Cheng, Z.J., Shan, J.: novel coronavirus: where we are and what we know. Infection 19 (2020) Cheng, Z.J., Shan, J.: novel coronavirus: where we are and what we know. Infection 19 (2020)
Metadata
Title
A Mathematical Study of Reproduction Number and Its Control Strategies in Some Early Epidemic and Corona-Virus Epidemic Model
Authors
Abhishek Sarkar
Kulbhushan Agnihotri
Krishna Pada Das
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56307-2_10

Premium Partners