Skip to main content
Top

2018 | OriginalPaper | Chapter

3. A Matrix Based Isolated Three Phase AC–DC Converter

Author : Amit Kumar Singh

Published in: Analysis and Design of Power Converter Topologies for Application in Future More Electric Aircraft

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent efforts of making aircraft more energy efficient, aircraft-industries are moving towards More Electric Aircraft (MEA). MEA offers several benefits compared to a conventional aircraft system including improved power transmission efficiency, reduced fuel consumption, lesser weight and reduced environmental impact. One of the enabling technologies for MEA is power electronic converter which is required to convert and condition the generated electric power for different aircraft loads (Rosero et al., IEEE Aerosp Electron Syst Mag, 22:3–9, 2007) [1], (Wheeler and Bozhko, IEEE Electrif Mag, 2:6–12, 2014) [2], (Sarlioglu and Morris, IEEE Trans Transp Electrif 1:54–64, 2015) [3].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
ESR is reduced by 0.7 factor for high frequency and temperature increase. The size of capacitor is 35 mm (d) and 55 mm (l). The maximum allowable temperature rise is taken as \(10\,^{\circ }\)C.
 
Literature
1.
go back to reference J. Rosero, J. Ortega, E. Aldabas, L. Romeral, Moving towards a more electric aircraft. IEEE Aerosp. Electron. Syst. Mag. 22, 3–9 (2007)CrossRef J. Rosero, J. Ortega, E. Aldabas, L. Romeral, Moving towards a more electric aircraft. IEEE Aerosp. Electron. Syst. Mag. 22, 3–9 (2007)CrossRef
2.
go back to reference P. Wheeler, S. Bozhko, The more electric aircraft: technology and challenges. IEEE Electrif. Mag. 2, 6–12 (2014)CrossRef P. Wheeler, S. Bozhko, The more electric aircraft: technology and challenges. IEEE Electrif. Mag. 2, 6–12 (2014)CrossRef
3.
go back to reference B. Sarlioglu, C. Morris, More electric aircraft: review, challenges, and opportunities for commercial transport aircraft. IEEE Trans. Transp. Electrif. 1, 54–64 (2015)CrossRef B. Sarlioglu, C. Morris, More electric aircraft: review, challenges, and opportunities for commercial transport aircraft. IEEE Trans. Transp. Electrif. 1, 54–64 (2015)CrossRef
4.
go back to reference Y. Deng, S. Foo, I. Bhattacharya, Regenerative electric power for more electric aircraft, in IEEE SOUTHEASTCON 2014 (2014), pp. 1–5 Y. Deng, S. Foo, I. Bhattacharya, Regenerative electric power for more electric aircraft, in IEEE SOUTHEASTCON 2014 (2014), pp. 1–5
5.
go back to reference B. Sarlioglu, Advances in ac-dc power conversion topologies for more electric aircraft, in 2012 IEEE Transportation Electrification Conference and Expo (ITEC) (2012), pp. 1–6 B. Sarlioglu, Advances in ac-dc power conversion topologies for more electric aircraft, in 2012 IEEE Transportation Electrification Conference and Expo (ITEC) (2012), pp. 1–6
6.
go back to reference R. Jones, The more electric aircraft: the past and the future?, in IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft (Ref. No. 1999/180) (1999), pp. 1/1–1/4 R. Jones, The more electric aircraft: the past and the future?, in IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft (Ref. No. 1999/180) (1999), pp. 1/1–1/4
7.
go back to reference R. Naayagi, A review of more electric aircraft technology, in 2013 International Conference on Energy Efficient Technologies for Sustainability (ICEETS) (2013), pp. 750–753 R. Naayagi, A review of more electric aircraft technology, in 2013 International Conference on Energy Efficient Technologies for Sustainability (ICEETS) (2013), pp. 750–753
8.
go back to reference J. Vieira, J. Oliver, P. Alou, J. Cobos, Power converter topologies for a high performance transformer rectifier unit in aircraft applications, in 2014 11th IEEE/IAS International Conference on Industry Applications (INDUSCON) (2014), pp. 1–8 J. Vieira, J. Oliver, P. Alou, J. Cobos, Power converter topologies for a high performance transformer rectifier unit in aircraft applications, in 2014 11th IEEE/IAS International Conference on Industry Applications (INDUSCON) (2014), pp. 1–8
9.
go back to reference J. Lee, Aircraft transformer-rectifier units. Stud. Q. J. 42, 69–71 (1972)CrossRef J. Lee, Aircraft transformer-rectifier units. Stud. Q. J. 42, 69–71 (1972)CrossRef
10.
go back to reference J. Kolar, T. Friedli, The essence of three-phase pfc rectifier systems-part i. IEEE Trans. Power Electron. 28, 176–198 (2013)CrossRef J. Kolar, T. Friedli, The essence of three-phase pfc rectifier systems-part i. IEEE Trans. Power Electron. 28, 176–198 (2013)CrossRef
11.
go back to reference T. Friedli, M. Hartmann, J. Kolar, The essence of three-phase pfc rectifier systems-part ii. IEEE Trans. Power Electron. 29, 543–560 (2014)CrossRef T. Friedli, M. Hartmann, J. Kolar, The essence of three-phase pfc rectifier systems-part ii. IEEE Trans. Power Electron. 29, 543–560 (2014)CrossRef
12.
go back to reference F. Xu, B. Guo, L. Tolbert, F. Wang, B. Blalock, An all-sic three-phase buck rectifier for high-efficiency data center power supplies. IEEE Trans. Ind. Appl. 49, 2662–2673 (2013)CrossRef F. Xu, B. Guo, L. Tolbert, F. Wang, B. Blalock, An all-sic three-phase buck rectifier for high-efficiency data center power supplies. IEEE Trans. Ind. Appl. 49, 2662–2673 (2013)CrossRef
13.
go back to reference Y. Zhang, L. Jin, Y. Jing, Z. Zhao, T. Lu, Three-level pwm rectifier based high efficiency batteries charger for ev, in 2013 IEEE Vehicle Power and Propulsion Conference (VPPC) (2013), pp. 1–4 Y. Zhang, L. Jin, Y. Jing, Z. Zhao, T. Lu, Three-level pwm rectifier based high efficiency batteries charger for ev, in 2013 IEEE Vehicle Power and Propulsion Conference (VPPC) (2013), pp. 1–4
14.
go back to reference S. Ratanapanachote, H. J. Cha, P. Enjeti, A digitally controlled switch mode power supply based on matrix converter, in 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004. PESC 04, vol. 3 (2004), pp. 2237–2243 S. Ratanapanachote, H. J. Cha, P. Enjeti, A digitally controlled switch mode power supply based on matrix converter, in 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004. PESC 04, vol. 3 (2004), pp. 2237–2243
15.
go back to reference J. Sandoval, S. Essakiappan, P. Enjeti, A bidirectional series resonant matrix converter topology for electric vehicle dc fast charging, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), pp. 3109–3116 J. Sandoval, S. Essakiappan, P. Enjeti, A bidirectional series resonant matrix converter topology for electric vehicle dc fast charging, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), pp. 3109–3116
16.
go back to reference Y. Wang, L. Yang, C. Wang, Z. Meng, Three phase high step-up single-stage flyback converter with no electrolytic capacitor, in 2014 International Electronics and Application Conference and Exposition (PEAC) (2014), pp. 1207–1211 Y. Wang, L. Yang, C. Wang, Z. Meng, Three phase high step-up single-stage flyback converter with no electrolytic capacitor, in 2014 International Electronics and Application Conference and Exposition (PEAC) (2014), pp. 1207–1211
17.
go back to reference B. Tamyurek, D. Torrey, A three-phase unity power factor single-stage ac-dc converter based on an interleaved flyback topology. IEEE Trans. Power Electron. 26, 308–318 (2011)CrossRef B. Tamyurek, D. Torrey, A three-phase unity power factor single-stage ac-dc converter based on an interleaved flyback topology. IEEE Trans. Power Electron. 26, 308–318 (2011)CrossRef
18.
go back to reference T. Zhao, J. Su, D. Xu, M. Mao, Commutation compensation for matrix based rectifiers due to leakage inductances of isolation transformer, in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia) (2015), pp. 1803–1808 T. Zhao, J. Su, D. Xu, M. Mao, Commutation compensation for matrix based rectifiers due to leakage inductances of isolation transformer, in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia) (2015), pp. 1803–1808
19.
go back to reference H. Keyhani, H. Toliyat, Isolated zvs high-frequency-link ac-ac converter with a reduced switch count. IEEE Trans. Power Electron. 29, 4156–4166 (2014)CrossRef H. Keyhani, H. Toliyat, Isolated zvs high-frequency-link ac-ac converter with a reduced switch count. IEEE Trans. Power Electron. 29, 4156–4166 (2014)CrossRef
20.
go back to reference H. Keyhani, H. Toliyat, W. Alexander, A single-stage multi-string quasi-resonant inverter for grid-tied photovoltaic systems, in 2013 IEEE Energy Conversion Congress and Exposition (ECCE) (2013), pp. 1925–1932 H. Keyhani, H. Toliyat, W. Alexander, A single-stage multi-string quasi-resonant inverter for grid-tied photovoltaic systems, in 2013 IEEE Energy Conversion Congress and Exposition (ECCE) (2013), pp. 1925–1932
21.
go back to reference H. Keyhani, H. Toliyat, M. Harfman-Todorovic, R. Lai, R. Datta, An isolated resonant ac-link three-phase ac-ac converter using a single hf transformer. IEEE Trans. Ind. Electron. 61, 5174–5183 (2014)CrossRef H. Keyhani, H. Toliyat, M. Harfman-Todorovic, R. Lai, R. Datta, An isolated resonant ac-link three-phase ac-ac converter using a single hf transformer. IEEE Trans. Ind. Electron. 61, 5174–5183 (2014)CrossRef
22.
go back to reference H. Keyhani, H. Toliyat, M. Todorovic, R. Lai, R. Datta, Step-up down three-phase resonant high-frequency ac-link inverters. IET Power Electron. 7, 1246–1255 (2014)CrossRef H. Keyhani, H. Toliyat, M. Todorovic, R. Lai, R. Datta, Step-up down three-phase resonant high-frequency ac-link inverters. IET Power Electron. 7, 1246–1255 (2014)CrossRef
23.
go back to reference H. Keyhani, M. Johnson, H. Toliyat, A soft-switched highly reliable grid-tied inverter for pv applications, in 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2014), pp. 1725–1732 H. Keyhani, M. Johnson, H. Toliyat, A soft-switched highly reliable grid-tied inverter for pv applications, in 2014 Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2014), pp. 1725–1732
24.
go back to reference H. Keyhani, H. Toliyat, Single-stage multistring pv inverter with an isolated high-frequency link and soft-switching operation. IEEE Trans. Power Electron. 29, 3919–3929 (2014)CrossRef H. Keyhani, H. Toliyat, Single-stage multistring pv inverter with an isolated high-frequency link and soft-switching operation. IEEE Trans. Power Electron. 29, 3919–3929 (2014)CrossRef
25.
go back to reference N.X. Bac, D. Vilathgamuwa, U. Madawala, A sic-based matrix converter topology for inductive power transfer system. IEEE Trans. Power Electron. 29, 4029–4038 (2014)CrossRef N.X. Bac, D. Vilathgamuwa, U. Madawala, A sic-based matrix converter topology for inductive power transfer system. IEEE Trans. Power Electron. 29, 4029–4038 (2014)CrossRef
26.
go back to reference C.H. Yang, T.J. Liang, K.H. Chen, J.S. Li, J.S. Lee, Loss analysis of half-bridge llc resonant converter, in 2013 1st International Future Energy Electronics Conference (IFEEC) (2013), pp. 155–160 C.H. Yang, T.J. Liang, K.H. Chen, J.S. Li, J.S. Lee, Loss analysis of half-bridge llc resonant converter, in 2013 1st International Future Energy Electronics Conference (IFEEC) (2013), pp. 155–160
27.
go back to reference H. Krishnamoorthy, P. Garg, P. Enjeti, A matrix converter-based topology for high power electric vehicle battery charging and v2g application, in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society (2012), pp. 2866–2871 H. Krishnamoorthy, P. Garg, P. Enjeti, A matrix converter-based topology for high power electric vehicle battery charging and v2g application, in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society (2012), pp. 2866–2871
28.
go back to reference J.J. Sandoval, S. Essakiappan, P. Enjeti, A bidirectional series resonant matrix converter topology for electric vehicle dc fast charging, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), pp. 3109–3116 J.J. Sandoval, S. Essakiappan, P. Enjeti, A bidirectional series resonant matrix converter topology for electric vehicle dc fast charging, in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), pp. 3109–3116
29.
go back to reference C. Li, Y. Zhong, D. Xu, Soft-switching three-phase matrix based isolated ac-dc converter for dc distribution system, in 2015 IEEE Energy Conversion Congress and Exposition (ECCE) (2015), pp. 6755–6761 C. Li, Y. Zhong, D. Xu, Soft-switching three-phase matrix based isolated ac-dc converter for dc distribution system, in 2015 IEEE Energy Conversion Congress and Exposition (ECCE) (2015), pp. 6755–6761
Metadata
Title
A Matrix Based Isolated Three Phase AC–DC Converter
Author
Amit Kumar Singh
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8213-9_3