Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 3/2009

01-03-2009 | Original Article

A model for transcutaneous current stimulation: simulations and experiments

Authors: Andreas Kuhn, Thierry Keller, Marc Lawrence, Manfred Morari

Published in: Medical & Biological Engineering & Computing | Issue 3/2009

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Complex nerve models have been developed for describing the generation of action potentials in humans. Such nerve models have primarily been used to model implantable electrical stimulation systems, where the stimulation electrodes are close to the nerve (near-field). To address if these nerve models can also be used to model transcutaneous electrical stimulation (TES) (far-field), we have developed a TES model that comprises a volume conductor and different previously published non-linear nerve models. The volume conductor models the resistive and capacitive properties of electrodes, electrode-skin interface, skin, fat, muscle, and bone. The non-linear nerve models were used to conclude from the potential field within the volume conductor on nerve activation. A comparison of simulated and experimentally measured chronaxie values (a measure for the excitability of nerves) and muscle twitch forces on human volunteers allowed us to conclude that some of the published nerve models can be used in TES models. The presented TES model provides a first step to more extensive model implementations for TES in which e.g., multi-array electrode configurations can be tested.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bajzek TJ, Jaeger RJ (1987) Characterization and control of muscle response to electrical stimulation. Ann Biomed Eng 15:485–501CrossRef Bajzek TJ, Jaeger RJ (1987) Characterization and control of muscle response to electrical stimulation. Ann Biomed Eng 15:485–501CrossRef
2.
go back to reference Baker LL, McNeal DR, Benton L, Bowman BR, Waters RL (2000) Neuro muscular electrical stimulation, 4th edn Baker LL, McNeal DR, Benton L, Bowman BR, Waters RL (2000) Neuro muscular electrical stimulation, 4th edn
3.
go back to reference Bostock H (1983) The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. J Physiol 341:59–74 Bostock H (1983) The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. J Physiol 341:59–74
4.
go back to reference Chiu SY, Ritchie JM, Rogart RB, Stagg D (1979) A quantitative description of membrane currents in rabbit myelinated nerve. J Physiol 292:149–166 Chiu SY, Ritchie JM, Rogart RB, Stagg D (1979) A quantitative description of membrane currents in rabbit myelinated nerve. J Physiol 292:149–166
5.
go back to reference Chou LW, Binder-Macleod SA (2007) The effects of stimulation frequency and fatigue on the force-intensity relationship for human skeletal muscle. Clin Neurophysiol 118:1387–1396CrossRef Chou LW, Binder-Macleod SA (2007) The effects of stimulation frequency and fatigue on the force-intensity relationship for human skeletal muscle. Clin Neurophysiol 118:1387–1396CrossRef
6.
go back to reference Crago PE, Peckham PH, Mortimer JT, Van der Meulen JP (1974) The choice of pulse duration for chronic electrical stimulation via surface, nerve, and intramuscular electrodes. Ann Biomed Eng 2:252–264CrossRef Crago PE, Peckham PH, Mortimer JT, Van der Meulen JP (1974) The choice of pulse duration for chronic electrical stimulation via surface, nerve, and intramuscular electrodes. Ann Biomed Eng 2:252–264CrossRef
7.
go back to reference Dorgan SJ, Reilly RB (1999) A model for human skin impedance during surface functional neuromuscular stimulation. IEEE Trans Rehabil Eng 7:341–348CrossRef Dorgan SJ, Reilly RB (1999) A model for human skin impedance during surface functional neuromuscular stimulation. IEEE Trans Rehabil Eng 7:341–348CrossRef
8.
go back to reference Elsaify A, Fothergill J, Peasgood W (2004) A portable fes system incorporating an electrode array and feedback sensors. In: Vienna Int. Workshop on Functional Electrostimulation, vol 8, pp 191–194 Elsaify A, Fothergill J, Peasgood W (2004) A portable fes system incorporating an electrode array and feedback sensors. In: Vienna Int. Workshop on Functional Electrostimulation, vol 8, pp 191–194
9.
go back to reference Fitzhugh R (1962) Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys J 2:11–21CrossRefMathSciNet Fitzhugh R (1962) Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys J 2:11–21CrossRefMathSciNet
10.
go back to reference Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng 17:25–104 Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng 17:25–104
11.
go back to reference Frankenhaeuser B, Huxley AF (1964) The action potential in the myelinated nerve fiber of xenopus laevis as computed on the basis of voltage clamp data. J Physiol 171:302–315 Frankenhaeuser B, Huxley AF (1964) The action potential in the myelinated nerve fiber of xenopus laevis as computed on the basis of voltage clamp data. J Physiol 171:302–315
12.
go back to reference Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: Iii. parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293CrossRef Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: Iii. parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293CrossRef
13.
go back to reference Geddes LA (2004) Accuracy limitations of chronaxie values. IEEE Trans Biomed Eng 51:176–181CrossRef Geddes LA (2004) Accuracy limitations of chronaxie values. IEEE Trans Biomed Eng 51:176–181CrossRef
14.
go back to reference Gregory CM, Dixon W, Bickel CS (2007) Impact of varying pulse frequency and duration on muscle torque production and fatigue. Muscle Nerve 35:504–509CrossRef Gregory CM, Dixon W, Bickel CS (2007) Impact of varying pulse frequency and duration on muscle torque production and fatigue. Muscle Nerve 35:504–509CrossRef
15.
go back to reference Harris R (1971) Chronaxy. In: SL (ed) Electrodiagnosis and electromyography, Baltimore, pp 218–239 Harris R (1971) Chronaxy. In: SL (ed) Electrodiagnosis and electromyography, Baltimore, pp 218–239
16.
go back to reference Hines ML, Carnevale NT (2001) Neuron: a tool for neuroscientists. Neuroscientist 7:123–135CrossRef Hines ML, Carnevale NT (2001) Neuron: a tool for neuroscientists. Neuroscientist 7:123–135CrossRef
17.
go back to reference Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544 Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544
18.
go back to reference Holsheimer J, Wesselink WA (1997) Optimum electrode geometry for spinal cord stimulation: the narrow bipole and tripole. Med Biol Eng Comput 35:493–497CrossRef Holsheimer J, Wesselink WA (1997) Optimum electrode geometry for spinal cord stimulation: the narrow bipole and tripole. Med Biol Eng Comput 35:493–497CrossRef
19.
go back to reference Jezernik S, Morari M (2005) Energy-optimal electrical excitation of nerve fibers. IEEE Trans Biomed Eng 52:740–743CrossRef Jezernik S, Morari M (2005) Energy-optimal electrical excitation of nerve fibers. IEEE Trans Biomed Eng 52:740–743CrossRef
20.
go back to reference Keller T, Popovic M, Amman M, Andereggen C, Dumont C (2000) A system for measuring finger forces during grasping. In: International functional electrical stimulation society conference, Aalborg, Denmark Keller T, Popovic M, Amman M, Andereggen C, Dumont C (2000) A system for measuring finger forces during grasping. In: International functional electrical stimulation society conference, Aalborg, Denmark
21.
go back to reference Keller T, Popovic MR, Pappas IPI, Muller PY (2002) Transcutaneous functional electrical stimulator “compex motion”. Artif Organs 26:219–223CrossRef Keller T, Popovic MR, Pappas IPI, Muller PY (2002) Transcutaneous functional electrical stimulator “compex motion”. Artif Organs 26:219–223CrossRef
22.
go back to reference Kesar T, Binder-Macleod S (2006) Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Exp Physiol 91:967–976CrossRef Kesar T, Binder-Macleod S (2006) Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Exp Physiol 91:967–976CrossRef
23.
go back to reference Kiernan MC, Burke D, Andersen KV, Bostock H (2000) Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve 23:399–409CrossRef Kiernan MC, Burke D, Andersen KV, Bostock H (2000) Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve 23:399–409CrossRef
24.
go back to reference Kuhn A, Keller T (2005) A 3d transient model for transcutaneous functional electrical stimulation. In: International functional electrical stimulation society conference, vol 10, Montreal, Canada, pp 385–387 Kuhn A, Keller T (2005) A 3d transient model for transcutaneous functional electrical stimulation. In: International functional electrical stimulation society conference, vol 10, Montreal, Canada, pp 385–387
25.
go back to reference Kuhn A, Keller T (2006) The influence of capacitive properties on nerve activation in transcutaneous electrical stimulation. In: International symposium on computer methods in biomechanics and biomedical engineering, vol 7, Antibes, France Kuhn A, Keller T (2006) The influence of capacitive properties on nerve activation in transcutaneous electrical stimulation. In: International symposium on computer methods in biomechanics and biomedical engineering, vol 7, Antibes, France
26.
go back to reference Kuhn A, Rauch GA, Keller T, Morari M, Dietz V (2005) A finite element model study to find the major anatomical influences on transcutaneous electrical stimulation. In: ZNZ Symposium, Zurich, Switzerland Kuhn A, Rauch GA, Keller T, Morari M, Dietz V (2005) A finite element model study to find the major anatomical influences on transcutaneous electrical stimulation. In: ZNZ Symposium, Zurich, Switzerland
27.
go back to reference Kuhn A, Rauch GA, Panchaphongsaphak P, Keller T (2005) Using transient fe models to assess anatomical influences on electrical stimulation. In: FEM Workshop, vol 12, Ulm, Germany Kuhn A, Rauch GA, Panchaphongsaphak P, Keller T (2005) Using transient fe models to assess anatomical influences on electrical stimulation. In: FEM Workshop, vol 12, Ulm, Germany
28.
go back to reference Kuhn A, Keller T, Prenaj B, Morari M (2006) The relevance of non-linear skin properties for a transcutaneous electrical stimulation model. In: International functional electrical stimulation society conference, vol 11, Zao, Japan Kuhn A, Keller T, Prenaj B, Morari M (2006) The relevance of non-linear skin properties for a transcutaneous electrical stimulation model. In: International functional electrical stimulation society conference, vol 11, Zao, Japan
29.
go back to reference Lapicque L (1907) Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarisation. J Physiol Paris 9:622–635 Lapicque L (1907) Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarisation. J Physiol Paris 9:622–635
30.
go back to reference Lawrence M, Pitschen G, Keller T, Kuhn A, Morari M (2008) Finger and wrist torque measurement system for the evaluation of grasp performance with neuroprosthesis. Artif Organs (in press) Lawrence M, Pitschen G, Keller T, Kuhn A, Morari M (2008) Finger and wrist torque measurement system for the evaluation of grasp performance with neuroprosthesis. Artif Organs (in press)
31.
go back to reference Lertmanorat Z, Gustafson KJ, Durand DM (2006) Electrode array for reversing the recruitment order of peripheral nerve stimulation: experimental studies. Ann Biomed Eng 34:152–160CrossRef Lertmanorat Z, Gustafson KJ, Durand DM (2006) Electrode array for reversing the recruitment order of peripheral nerve stimulation: experimental studies. Ann Biomed Eng 34:152–160CrossRef
32.
go back to reference Livshitz LM, Einziger PD, Mizrahi J (2002) Rigorous green’s function formulation for transmembrane potential induced along a 3-d infinite cylindrical cell. IEEE Trans Biomed Eng 49:1491–1503CrossRef Livshitz LM, Einziger PD, Mizrahi J (2002) Rigorous green’s function formulation for transmembrane potential induced along a 3-d infinite cylindrical cell. IEEE Trans Biomed Eng 49:1491–1503CrossRef
33.
go back to reference Manola L, Roelofsen BH, Holsheimer J, Marani E, Geelen J (2005) Modelling motor cortex stimulation for chronic pain control: electrical potential field, activating functions and responses of simple nerve fibre models. Med Biol Eng Comput 43:335–343CrossRef Manola L, Roelofsen BH, Holsheimer J, Marani E, Geelen J (2005) Modelling motor cortex stimulation for chronic pain control: electrical potential field, activating functions and responses of simple nerve fibre models. Med Biol Eng Comput 43:335–343CrossRef
34.
go back to reference Martinek J, Reichel M, Rattay F, Mayr W (2004) Analysis of calculated electrical activation of denervated muscle fibres in the human thigh. In: Proceedings of 8th Vienna international workshop on functional electrical stimulation, pp 228–231 Martinek J, Reichel M, Rattay F, Mayr W (2004) Analysis of calculated electrical activation of denervated muscle fibres in the human thigh. In: Proceedings of 8th Vienna international workshop on functional electrical stimulation, pp 228–231
35.
go back to reference Martinek J, Stickler Y, Dohnal F, Reichel M, Mayr W, Rattay F (2006) Simulation der funktionellen elektrostimulation im menschlichen oberschenkel unter verwendung von femlab. In: Proceedings of the COMSOL Users Conference 2006, Frankfurt, pp 20–23 Martinek J, Stickler Y, Dohnal F, Reichel M, Mayr W, Rattay F (2006) Simulation der funktionellen elektrostimulation im menschlichen oberschenkel unter verwendung von femlab. In: Proceedings of the COMSOL Users Conference 2006, Frankfurt, pp 20–23
36.
go back to reference Martinek J, Stickler Y, Reichel M, Rattay F (2007) A new approach to simulate hodgkin-huxley like excitation with comsol multiphysics (femlab). In: Proceedings of 9th Vienna international workshop on functional electrical stimulation, pp 163–166 Martinek J, Stickler Y, Reichel M, Rattay F (2007) A new approach to simulate hodgkin-huxley like excitation with comsol multiphysics (femlab). In: Proceedings of 9th Vienna international workshop on functional electrical stimulation, pp 163–166
37.
go back to reference McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87:995–1006 McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87:995–1006
38.
go back to reference McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23:329–337CrossRef McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23:329–337CrossRef
39.
go back to reference Mesin L, Merletti R (2008) Distribution of electrical stimulation current in a planar multilayer anisotropic tissue. IEEE Trans Biomed Eng 55:660–670CrossRef Mesin L, Merletti R (2008) Distribution of electrical stimulation current in a planar multilayer anisotropic tissue. IEEE Trans Biomed Eng 55:660–670CrossRef
40.
go back to reference Polk C (1986) CRC handbook of biological effects of electromagnetic fields. CRC Press, Boca Raton Polk C (1986) CRC handbook of biological effects of electromagnetic fields. CRC Press, Boca Raton
41.
go back to reference Prodanov D, Feirabend HK (2007) Morphometric analysis of the fiber populations of the rat sciatic nerve, its spinal roots, and its major branches. J Comp Neurol 503:85–100CrossRef Prodanov D, Feirabend HK (2007) Morphometric analysis of the fiber populations of the rat sciatic nerve, its spinal roots, and its major branches. J Comp Neurol 503:85–100CrossRef
42.
go back to reference Rattay F (1990) Electrical nerve stimulation theory, experiments and applications. Springer, Wien Rattay F (1990) Electrical nerve stimulation theory, experiments and applications. Springer, Wien
43.
go back to reference Reichel M, Martinek J, Mayr W, Rattay F (2004) Functional electrical stimulation of denervated skeletal muscle fibers in 3d human thigh—modeling and simulation. In: Proceedings of 8th Vienna international workshop on functional electrical stimulation, pp 44–47 Reichel M, Martinek J, Mayr W, Rattay F (2004) Functional electrical stimulation of denervated skeletal muscle fibers in 3d human thigh—modeling and simulation. In: Proceedings of 8th Vienna international workshop on functional electrical stimulation, pp 44–47
44.
go back to reference Reilly JP, Bauer RH (1987) Application of a neuroelectric model to electrocutaneous sensory sensitivity: parameter variation study. IEEE Trans Biomed Eng 34:752–754CrossRef Reilly JP, Bauer RH (1987) Application of a neuroelectric model to electrocutaneous sensory sensitivity: parameter variation study. IEEE Trans Biomed Eng 34:752–754CrossRef
45.
go back to reference Reilly JP, Antoni H, Chilbert MA, Sweeney JD (1998) Applied bioelectricity from electrical stimulation to electropathology. Springer, New York Reilly JP, Antoni H, Chilbert MA, Sweeney JD (1998) Applied bioelectricity from electrical stimulation to electropathology. Springer, New York
46.
go back to reference Rijkhoff NJ, Holsheimer J, Koldewijn EL, Struijk JJ, van Kerrebroeck PE, Debruyne FM, Wijkstra H (1994) Selective stimulation of sacral nerve roots for bladder control: a study by computer modeling. IEEE Trans Biomed Eng 41:413–24CrossRef Rijkhoff NJ, Holsheimer J, Koldewijn EL, Struijk JJ, van Kerrebroeck PE, Debruyne FM, Wijkstra H (1994) Selective stimulation of sacral nerve roots for bladder control: a study by computer modeling. IEEE Trans Biomed Eng 41:413–24CrossRef
47.
go back to reference Schiefer MA, Triolo RJ, Tyler DJ (2008) A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 16:195–204CrossRef Schiefer MA, Triolo RJ, Tyler DJ (2008) A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 16:195–204CrossRef
48.
go back to reference Schuhfried O, Kollmann C, Paternostro-Sluga T (2005) Excitability of chronic hemiparetic muscles: determination of chronaxie values and strength-duration curves and its implication in functional electrical stimulation. IEEE Trans Neural Syst Rehabil Eng 13:105–109CrossRef Schuhfried O, Kollmann C, Paternostro-Sluga T (2005) Excitability of chronic hemiparetic muscles: determination of chronaxie values and strength-duration curves and its implication in functional electrical stimulation. IEEE Trans Neural Syst Rehabil Eng 13:105–109CrossRef
49.
go back to reference Sotiropoulos SN, Steinmetz PN (2007) Assessing the direct effects of deep brain stimulation using embedded axon models. J Neural Eng 4:107–119CrossRef Sotiropoulos SN, Steinmetz PN (2007) Assessing the direct effects of deep brain stimulation using embedded axon models. J Neural Eng 4:107–119CrossRef
50.
go back to reference Standring S (2005) Gray’s Anatomy, 39th edn Standring S (2005) Gray’s Anatomy, 39th edn
51.
go back to reference Strickler Y, Martinek J, Hofer C, Rattay F (2007) A finite element model of the electrically stimulated human thigh: Changes due to denervation and training. In: Proc. of 9th Vienna International Workshop on Functional Electrical Stimulation, Krems, Austria, pp 20–23 Strickler Y, Martinek J, Hofer C, Rattay F (2007) A finite element model of the electrically stimulated human thigh: Changes due to denervation and training. In: Proc. of 9th Vienna International Workshop on Functional Electrical Stimulation, Krems, Austria, pp 20–23
52.
go back to reference Sweeney J, Mortimer J, Durand D (1987) Modeling of mammalian myelinated nerve for functional neuromuscular stimulation. In: Proc. of IEEE 9th Annual Conference of the Engineering in Medicine and Biology Society, pp 1577–1578 Sweeney J, Mortimer J, Durand D (1987) Modeling of mammalian myelinated nerve for functional neuromuscular stimulation. In: Proc. of IEEE 9th Annual Conference of the Engineering in Medicine and Biology Society, pp 1577–1578
53.
go back to reference Valentin J (2001) Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP Valentin J (2001) Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP
54.
go back to reference Vodovnik L, Crochetiere WJ, Reswick JB (1967) Control of a skeletal joint by electrical stimulation of antagonists. Med Biol Eng 5:97–109CrossRef Vodovnik L, Crochetiere WJ, Reswick JB (1967) Control of a skeletal joint by electrical stimulation of antagonists. Med Biol Eng 5:97–109CrossRef
55.
go back to reference Zierhofer CM (2001) Analysis of a linear model for electrical stimulation of axons–critical remarks on the “activating function concept”. IEEE Trans Biomed Eng 48:173–184CrossRef Zierhofer CM (2001) Analysis of a linear model for electrical stimulation of axons–critical remarks on the “activating function concept”. IEEE Trans Biomed Eng 48:173–184CrossRef
Metadata
Title
A model for transcutaneous current stimulation: simulations and experiments
Authors
Andreas Kuhn
Thierry Keller
Marc Lawrence
Manfred Morari
Publication date
01-03-2009
Publisher
Springer-Verlag
Published in
Medical & Biological Engineering & Computing / Issue 3/2009
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-008-0422-z

Other articles of this Issue 3/2009

Medical & Biological Engineering & Computing 3/2009 Go to the issue

Premium Partner