Skip to main content
Top

2019 | OriginalPaper | Chapter

A Natural Probabilistic Model on the Integers and Its Relation to Dickman-Type Distributions and Buchstab’s Function

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let \(\{p_j\}_{j=1}^\infty \) denote the set of prime numbers in increasing order, let \(\Omega _N\subset \mathbb {N}\) denote the set of positive integers with no prime factor larger than \(p_N\) and let \(P_N\) denote the probability measure on \(\Omega _N\) which gives to each \(n\in \Omega _N\) a probability proportional to \(\frac{1}{n}\). This measure is in fact the distribution of the random integer \(I_N\in \Omega _N\) defined by \(I_N=\prod _{j=1}^Np_j^{X_{p_j}}\), where \(\{X_{p_j}\}_{j=1}^\infty \) are independent random variables and \(X_{p_j}\) is distributed as Geom\((1-\frac{1}{p_j})\). We show that \(\frac{\log n}{\log N}\) under \(P_N\) converges weakly to the Dickman distribution. As a corollary, we recover a classical result from multiplicative number theory—Mertens’ formula. Let \(D_{\text {nat}}(A)\) denote the natural density of \(A\subset \mathbb {N}\), if it exists, and let \(D_{\text {log-indep}}(A)=\lim _{N\rightarrow \infty }P_N(A\cap \Omega _N)\) denote the density of A arising from \(\{P_N\}_{N=1}^\infty \), if it exists. We show that the two densities coincide on a natural algebra of subsets of \(\mathbb {N}\). We also show that they do not agree on the sets of \(n^\frac{1}{s}\)-smooth numbers \(\{n\in \mathbb {N}: p^+(n)\le n^\frac{1}{s}\}\), \(s>1\), where \(p^+(n)\) denotes the largest prime divisor of n. This last consideration concerns distributions involving the Dickman function. We also consider the sets of \(n^\frac{1}{s}\)-rough numbers \(\{n\in \mathbb {N}:p^-(n)\ge n^{\frac{1}{s}}\}\), \(s>1\), where \(p^-(n)\) denotes the smallest prime divisor of n. We show that the probabilities of these sets, under the uniform distribution on \([N]=\{1,\ldots , N\}\) and under the \(P_N\)-distribution on \(\Omega _N\), have the same asymptotic decay profile as functions of s, although their rates are necessarily different. This profile involves the Buchstab function. We also prove a new representation for the Buchstab function.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Arratia, R., Barbour, A., Tavaré, S.: Logarithmic combinatorial structures: a probabilistic approach. EMS Monographs in Mathematics. European Mathematical Society, EMS, Zurich (2003) Arratia, R., Barbour, A., Tavaré, S.: Logarithmic combinatorial structures: a probabilistic approach. EMS Monographs in Mathematics. European Mathematical Society, EMS, Zurich (2003)
2.
go back to reference Billingsley, P.: On the distribution of large prime divisors, collection of articles dedicated to the memory of Alfréd Rényi I. Period. Math. Hungar. 2, 283–289 (1972)MathSciNetCrossRef Billingsley, P.: On the distribution of large prime divisors, collection of articles dedicated to the memory of Alfréd Rényi I. Period. Math. Hungar. 2, 283–289 (1972)MathSciNetCrossRef
3.
4.
go back to reference de Bruijn, N.: On the number of positive integers \(\le x\) and free of prime factors \(>y\). Nederl. Acad. Wetensch. Proc. Ser. A. 54, 50–60 (1951)MathSciNetMATH de Bruijn, N.: On the number of positive integers \(\le x\) and free of prime factors \(>y\). Nederl. Acad. Wetensch. Proc. Ser. A. 54, 50–60 (1951)MathSciNetMATH
5.
go back to reference Buchstab, A.: An asymptotic estimation of a general number-theoretic function. Mat. Sbornik 44, 1239–1246 (1937) Buchstab, A.: An asymptotic estimation of a general number-theoretic function. Mat. Sbornik 44, 1239–1246 (1937)
6.
go back to reference Cellarosi, F., Sinai, Y.: Non-standard limit theorems in number theory. In: Prokhorov and Contemporary Probability Theory, vol. 33, pp. 197–213. Springer Proceedings in Mathematics & Statistics. Springer, Heidelberg (2013) Cellarosi, F., Sinai, Y.: Non-standard limit theorems in number theory. In: Prokhorov and Contemporary Probability Theory, vol. 33, pp. 197–213. Springer Proceedings in Mathematics & Statistics. Springer, Heidelberg (2013)
7.
go back to reference Dickman, K.: On the frequency of numbers containing prime factors of a certain relative magnitude. Ark. Math. Astr. Fys. 22, 1–14 (1930)MATH Dickman, K.: On the frequency of numbers containing prime factors of a certain relative magnitude. Ark. Math. Astr. Fys. 22, 1–14 (1930)MATH
8.
go back to reference Durrett, R.: Probability Theory and Examples, 3rd edn. Brooks/Cole, Belmont, CA (2005)MATH Durrett, R.: Probability Theory and Examples, 3rd edn. Brooks/Cole, Belmont, CA (2005)MATH
9.
go back to reference Elliott, P.D.T.A.: Probabilistic Number Theory. I. Mean-Value Theorems. Grundlehren der Mathematischen Wissenschaften, vol. 239. Springer, New York (1979) Elliott, P.D.T.A.: Probabilistic Number Theory. I. Mean-Value Theorems. Grundlehren der Mathematischen Wissenschaften, vol. 239. Springer, New York (1979)
10.
go back to reference Elliott, P.D.T.A.: Probabilistic Number Theory. II. Central Limit Theorems. Grundlehren der Mathematischen Wissenschaften, vol. 240. Springer, New York (1980) Elliott, P.D.T.A.: Probabilistic Number Theory. II. Central Limit Theorems. Grundlehren der Mathematischen Wissenschaften, vol. 240. Springer, New York (1980)
11.
go back to reference Erdös, P., Wintner, A.: Additive arithmetical functions and statistical independence. Am. J. Math. 61, 713–721 (1939)MathSciNetCrossRef Erdös, P., Wintner, A.: Additive arithmetical functions and statistical independence. Am. J. Math. 61, 713–721 (1939)MathSciNetCrossRef
12.
go back to reference Erdös, P., Kac, M.: The Gaussian law of errors in the theory of additive number theoretic functions. Am. J. Math. 62, 738–742 (1940)MathSciNetCrossRef Erdös, P., Kac, M.: The Gaussian law of errors in the theory of additive number theoretic functions. Am. J. Math. 62, 738–742 (1940)MathSciNetCrossRef
13.
go back to reference Giuliano, R., Macci, C.: Asymptotic results for weighted means of random variables which converge to a Dickman distribution, and some number theoretical applications. ESAIM Probab. Stat. 19, 395–413 (2015)MathSciNetCrossRef Giuliano, R., Macci, C.: Asymptotic results for weighted means of random variables which converge to a Dickman distribution, and some number theoretical applications. ESAIM Probab. Stat. 19, 395–413 (2015)MathSciNetCrossRef
14.
go back to reference Hardy, G.H., Ramanujan, S.: Proof that almost all numbers \(n\) are composed of about \(\log \log n\) prime factors. Proc. London Math. Soc. 16, 242–243 (1917). Collected Papers of Srinivasa Ramanujan. AMS Chelsea Publications, Providence, RI (2000) Hardy, G.H., Ramanujan, S.: Proof that almost all numbers \(n\) are composed of about \(\log \log n\) prime factors. Proc. London Math. Soc. 16, 242–243 (1917). Collected Papers of Srinivasa Ramanujan. AMS Chelsea Publications, Providence, RI (2000)
15.
go back to reference Lagarias, J.: Euler’s constant: Euler’s work and modern developments. Bull. Am. Math. Soc. (N.S.) 50, 527–628 (2013)MathSciNetCrossRef Lagarias, J.: Euler’s constant: Euler’s work and modern developments. Bull. Am. Math. Soc. (N.S.) 50, 527–628 (2013)MathSciNetCrossRef
16.
17.
go back to reference Mehrdad, B., Zhu, L.: Limit theorems for empirical density of greatest common divisors. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 161, pp. 517–533 (2016)MathSciNetCrossRef Mehrdad, B., Zhu, L.: Limit theorems for empirical density of greatest common divisors. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 161, pp. 517–533 (2016)MathSciNetCrossRef
18.
go back to reference Montgomery, H., Vaughan, R.: Multiplicative Number Theory. I. Classical Theory. Cambridge Studies in Advanced Mathematics, vol. 97. Cambridge University Press, Cambridge (2007) Montgomery, H., Vaughan, R.: Multiplicative Number Theory. I. Classical Theory. Cambridge Studies in Advanced Mathematics, vol. 97. Cambridge University Press, Cambridge (2007)
19.
go back to reference Nathanson, M.: Elementary Methods in Number Theory, Graduate Texts in Mathematics, vol. 195. Springer, New York (2000) Nathanson, M.: Elementary Methods in Number Theory, Graduate Texts in Mathematics, vol. 195. Springer, New York (2000)
20.
go back to reference Penrose, M., Wade, A.: Random minimal directed spanning trees and Dickman-type distributions. Adv. Appl. Probab. 36, 691–714 (2004)MathSciNetCrossRef Penrose, M., Wade, A.: Random minimal directed spanning trees and Dickman-type distributions. Adv. Appl. Probab. 36, 691–714 (2004)MathSciNetCrossRef
21.
go back to reference Pinsky, R.: On the strange domain of attraction to generalized Dickman distributions for sums of independent random variables. Electron. J. Probab. 23 (2018). (Paper No. 3, 17 pp) Pinsky, R.: On the strange domain of attraction to generalized Dickman distributions for sums of independent random variables. Electron. J. Probab. 23 (2018). (Paper No. 3, 17 pp)
22.
go back to reference Shapiro, H.: Introduction to the Theory of Numbers. Wiley, New York (1983)MATH Shapiro, H.: Introduction to the Theory of Numbers. Wiley, New York (1983)MATH
23.
go back to reference Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)MATH Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)MATH
Metadata
Title
A Natural Probabilistic Model on the Integers and Its Relation to Dickman-Type Distributions and Buchstab’s Function
Author
Ross G. Pinsky
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-15338-0_10