Skip to main content
Top
Published in: Computational Mechanics 2/2020

12-10-2019 | Original Paper

A new conservative/dissipative time integration scheme for nonlinear mechanical systems

Authors: Cristian Guillermo Gebhardt, Ignacio Romero, Raimund Rolfes

Published in: Computational Mechanics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a conservative/dissipative time integration scheme for nonlinear mechanical systems. Starting from a weak form, we derive algorithmic forces and velocities that guarantee the desired conservation/dissipation properties. Our approach relies on a collection of linearly constrained quadratic programs defining high order correction terms that modify, in the minimum possible way, the classical midpoint rule so as to guarantee the strict energy conservation/dissipation properties. The solution of these programs provides explicit formulas for the algorithmic forces and velocities which can be easily incorporated into existing implementations. Similarities and differences between our approach and well-established methods are discussed as well. The approach, suitable for reduced-order models, finite element models, or multibody systems, is tested and its capabilities are illustrated by means of several examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Arnold VI (1989) Mathematical methods of classical mechanics. Springer, Berlin Arnold VI (1989) Mathematical methods of classical mechanics. Springer, Berlin
2.
go back to reference Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration, 2nd edn. Springer, BerlinMATH Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration, 2nd edn. Springer, BerlinMATH
3.
go back to reference Stuart AM, Humphries AR (1996) Dynamical systems and numerical analysis. Cambridge University Press, CambridgeMATH Stuart AM, Humphries AR (1996) Dynamical systems and numerical analysis. Cambridge University Press, CambridgeMATH
4.
go back to reference Simo JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys 43:757–792MathSciNetMATH Simo JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys 43:757–792MathSciNetMATH
5.
go back to reference Simo JC, Tarnow N (1994) A new energy and momentum conserving algorithm for the non-linear dynamics of shells. Int J Numer Methods Eng 37:2527–2549MathSciNetMATH Simo JC, Tarnow N (1994) A new energy and momentum conserving algorithm for the non-linear dynamics of shells. Int J Numer Methods Eng 37:2527–2549MathSciNetMATH
6.
7.
go back to reference Kane C, Marsden JE, Ortiz M (1999) Symplectic-energy-momentum preserving variational integrators. J Math Phys 40:3353–3371MathSciNetMATH Kane C, Marsden JE, Ortiz M (1999) Symplectic-energy-momentum preserving variational integrators. J Math Phys 40:3353–3371MathSciNetMATH
8.
go back to reference McLachlan RI, Quispel GRW, Robideux N (1999) Geometric integration using discrete gradients. Philos Trans Math Phys Eng Sci 357:1021–1045MathSciNetMATH McLachlan RI, Quispel GRW, Robideux N (1999) Geometric integration using discrete gradients. Philos Trans Math Phys Eng Sci 357:1021–1045MathSciNetMATH
9.
go back to reference Armero F, Romero I (2001) On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics. Comput Methods Appl Mech Eng 190:2603–2649MATH Armero F, Romero I (2001) On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics. Comput Methods Appl Mech Eng 190:2603–2649MATH
10.
11.
go back to reference Simo JC, Tarnow N, Doblaré M (1995) Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int J Numer Methods Eng 38:1431–1473MathSciNetMATH Simo JC, Tarnow N, Doblaré M (1995) Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int J Numer Methods Eng 38:1431–1473MathSciNetMATH
12.
go back to reference Romero I, Armero F (2002) An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int J Numer Methods Eng 54:1683–1716MathSciNetMATH Romero I, Armero F (2002) An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int J Numer Methods Eng 54:1683–1716MathSciNetMATH
13.
go back to reference Armero F, Petocz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158:269–300MathSciNetMATH Armero F, Petocz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158:269–300MathSciNetMATH
14.
go back to reference Goicolea JM, García Orden JC (2000) Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy-momentum schemes. Comput Methods Appl Mech Eng 188:789–804MathSciNetMATH Goicolea JM, García Orden JC (2000) Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy-momentum schemes. Comput Methods Appl Mech Eng 188:789–804MathSciNetMATH
15.
go back to reference Betsch P, Hesch C, Sänger N, Uhlar S (2010) Variational integrators and energy-momentum schemes for flexible multibody dynamics. J Comput Nonlinear Dyn 5:031001-1–031001-11 Betsch P, Hesch C, Sänger N, Uhlar S (2010) Variational integrators and energy-momentum schemes for flexible multibody dynamics. J Comput Nonlinear Dyn 5:031001-1–031001-11
16.
go back to reference Gonzalez O (2000) Exact energy-momentum conserving algorithms for general models in nonlinear elasticity. Comput Methods Appl Mech Eng 190:1763–1783MathSciNetMATH Gonzalez O (2000) Exact energy-momentum conserving algorithms for general models in nonlinear elasticity. Comput Methods Appl Mech Eng 190:1763–1783MathSciNetMATH
17.
go back to reference Laursen TA, Meng XN (2001) A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics. Comput Methods Appl Mech Eng 190:6300–6309MathSciNetMATH Laursen TA, Meng XN (2001) A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics. Comput Methods Appl Mech Eng 190:6300–6309MathSciNetMATH
18.
go back to reference Gotusso L (1985) On the energy theorem for the Lagrange equations in the discrete case. Appl Math Comput 17:129–136MathSciNetMATH Gotusso L (1985) On the energy theorem for the Lagrange equations in the discrete case. Appl Math Comput 17:129–136MathSciNetMATH
19.
go back to reference Itoh T, Abe K (1988) Hamiltonian-conserving discrete canonical equations based on variational difference quotients. J Comput Phys 76:85–102MathSciNetMATH Itoh T, Abe K (1988) Hamiltonian-conserving discrete canonical equations based on variational difference quotients. J Comput Phys 76:85–102MathSciNetMATH
20.
go back to reference Romero I (2012) An analysis of the stress formula for energy-momentum methods in nonlinear elastodynamics. Comput Mech 50:603–610MathSciNetMATH Romero I (2012) An analysis of the stress formula for energy-momentum methods in nonlinear elastodynamics. Comput Mech 50:603–610MathSciNetMATH
21.
go back to reference Harten A, Lax B, Leer P (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25:35–61MathSciNetMATH Harten A, Lax B, Leer P (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25:35–61MathSciNetMATH
22.
go back to reference French DA, Schaeffer JW (1990) Continuous finite element methods which preserve energy properties for nonlinear problems. Appl Math Comput 39:271–295MathSciNetMATH French DA, Schaeffer JW (1990) Continuous finite element methods which preserve energy properties for nonlinear problems. Appl Math Comput 39:271–295MathSciNetMATH
23.
go back to reference Groß M, Betsch P, Steinmann P (2005) Conservation properties of a time fe method. Part IV: higher order energy and momentum conserving schemes. Int J Numer Methods Eng 63:1849–1897MATH Groß M, Betsch P, Steinmann P (2005) Conservation properties of a time fe method. Part IV: higher order energy and momentum conserving schemes. Int J Numer Methods Eng 63:1849–1897MATH
24.
go back to reference Betsch P, Janz A, Hesch C (2018) A mixed variational framework for the design of energy-momentum schemes inspired by the structure of polyconvex stored energy functions. Comput Methods Appl Mech Eng 335:660–696MathSciNet Betsch P, Janz A, Hesch C (2018) A mixed variational framework for the design of energy-momentum schemes inspired by the structure of polyconvex stored energy functions. Comput Methods Appl Mech Eng 335:660–696MathSciNet
25.
go back to reference García Orden JC (2018) Energy and symmetry-preserving formulation of nonlinear constraints and potential forces in multibody dynamics. Nonlinear Dyn 95:823–837 García Orden JC (2018) Energy and symmetry-preserving formulation of nonlinear constraints and potential forces in multibody dynamics. Nonlinear Dyn 95:823–837
26.
go back to reference Kuhl D, Ramm E (1996) Constraint energy momentum algorithm and its application to nonlinear dynamics of shells. Comput Methods Appl Mech Eng 136:293–315MATH Kuhl D, Ramm E (1996) Constraint energy momentum algorithm and its application to nonlinear dynamics of shells. Comput Methods Appl Mech Eng 136:293–315MATH
27.
go back to reference Kuhl D, Crisfield MA (1999) Energy-conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45:569–599MathSciNetMATH Kuhl D, Crisfield MA (1999) Energy-conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45:569–599MathSciNetMATH
28.
go back to reference Bottasso CL, Borri M (1997) Energy preserving/decaying schemes for non-linear beam dynamics using the helicoidal approximation. Comput Methods Appl Mech Eng 143:393–415MathSciNetMATH Bottasso CL, Borri M (1997) Energy preserving/decaying schemes for non-linear beam dynamics using the helicoidal approximation. Comput Methods Appl Mech Eng 143:393–415MathSciNetMATH
29.
go back to reference Bottasso CL, Borri M, Trainelli L (2001) Integration of elastic multibody systems by invariant conserving/dissipating algorithms. II. Numerical schemes and applications. Comput Methods Appl Mech Eng 190:3701–3733MathSciNetMATH Bottasso CL, Borri M, Trainelli L (2001) Integration of elastic multibody systems by invariant conserving/dissipating algorithms. II. Numerical schemes and applications. Comput Methods Appl Mech Eng 190:3701–3733MathSciNetMATH
30.
go back to reference Romero I (2016) High frequency dissipative integration schemes for linear and nonlinear elastodynamics. In: Betsch P (ed) Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics. Springer, Berlin, pp 1–30 Romero I (2016) High frequency dissipative integration schemes for linear and nonlinear elastodynamics. In: Betsch P (ed) Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics. Springer, Berlin, pp 1–30
31.
go back to reference Armero F, Romero I (2001) On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Comput Methods Appl Mech Eng 190:6783–6824MATH Armero F, Romero I (2001) On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Comput Methods Appl Mech Eng 190:6783–6824MATH
32.
go back to reference Romero I, Armero F (2002) Numerical integration of the stiff dynamics of geometrically exact shells: an energy-dissipative momentum-conserving scheme. Int J Numer Methods Eng 54:1043–1086MathSciNetMATH Romero I, Armero F (2002) Numerical integration of the stiff dynamics of geometrically exact shells: an energy-dissipative momentum-conserving scheme. Int J Numer Methods Eng 54:1043–1086MathSciNetMATH
33.
go back to reference Armero F, Romero I (2003) Energy-dissipative momentum-conserving time-stepping algorithms for the dynamics of nonlinear cosserat rods. Comput Mech 31:3–26MathSciNetMATH Armero F, Romero I (2003) Energy-dissipative momentum-conserving time-stepping algorithms for the dynamics of nonlinear cosserat rods. Comput Mech 31:3–26MathSciNetMATH
34.
go back to reference Gebhardt CG, Hofmeister B, Hente C, Rolfes R (2019) Nonlinear dynamics of slender structures: a new object-oriented framework. Comput Mech 63:219–252MathSciNetMATH Gebhardt CG, Hofmeister B, Hente C, Rolfes R (2019) Nonlinear dynamics of slender structures: a new object-oriented framework. Comput Mech 63:219–252MathSciNetMATH
35.
go back to reference Gebhardt CG, Steinbach MC, Rolfes R (2019) Understanding the nonlinear dynamics of beam structures: a principal geodesic analysis approach. Thin-Walled Struct 140:357–372 Gebhardt CG, Steinbach MC, Rolfes R (2019) Understanding the nonlinear dynamics of beam structures: a principal geodesic analysis approach. Thin-Walled Struct 140:357–372
36.
go back to reference Kerschen G, Golinval J-C, Vakakis AF, Bergman LA (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn 41:147–169MathSciNetMATH Kerschen G, Golinval J-C, Vakakis AF, Bergman LA (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn 41:147–169MathSciNetMATH
37.
go back to reference Jansen EL (2005) Dynamic stability problems of anisotropic cylindrical shells via simplified analysis. Nonlinear Dyn 39:349–367MATH Jansen EL (2005) Dynamic stability problems of anisotropic cylindrical shells via simplified analysis. Nonlinear Dyn 39:349–367MATH
38.
go back to reference Kreiss H-O, Ortiz OE (2014) Introduction to numerical methods for time dependent differential equations. Wiley, LondonMATH Kreiss H-O, Ortiz OE (2014) Introduction to numerical methods for time dependent differential equations. Wiley, LondonMATH
39.
go back to reference Kopmaz O, Gündoğdu O (2003) On the curvature of an Euler–Bernoulli beam. Int J Mech Eng Educ 31:132–142 Kopmaz O, Gündoğdu O (2003) On the curvature of an Euler–Bernoulli beam. Int J Mech Eng Educ 31:132–142
40.
go back to reference Nayfeh AH, Pai PF (2008) Linear and nonlinear structural mechanics. Wiley, LondonMATH Nayfeh AH, Pai PF (2008) Linear and nonlinear structural mechanics. Wiley, LondonMATH
41.
go back to reference Ye F, Zi-Xiong G, Yi-Chao G (2018) An unconditionally stable explicit algorithm for nonlinear structural dynamics. J Eng Mech 144:04018034-1–04018034-8 Ye F, Zi-Xiong G, Yi-Chao G (2018) An unconditionally stable explicit algorithm for nonlinear structural dynamics. J Eng Mech 144:04018034-1–04018034-8
42.
go back to reference Gebhardt CG, Rolfes R (2017) On the nonlinear dynamics of shell structures: combining a mixed finite element formulation and a robust integration scheme. Thin-Walled Struct 118:56–72 Gebhardt CG, Rolfes R (2017) On the nonlinear dynamics of shell structures: combining a mixed finite element formulation and a robust integration scheme. Thin-Walled Struct 118:56–72
43.
go back to reference Betsch P, Sänger N (2009) On the use of geometrically exact shells in a conserving framework for flexible multibody dynamic. Comput Methods Appl Mech Eng 198:1609–1630MathSciNetMATH Betsch P, Sänger N (2009) On the use of geometrically exact shells in a conserving framework for flexible multibody dynamic. Comput Methods Appl Mech Eng 198:1609–1630MathSciNetMATH
44.
go back to reference Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics. Comput Methods Appl Mech Eng 192:1017–1059MATH Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics. Comput Methods Appl Mech Eng 192:1017–1059MATH
Metadata
Title
A new conservative/dissipative time integration scheme for nonlinear mechanical systems
Authors
Cristian Guillermo Gebhardt
Ignacio Romero
Raimund Rolfes
Publication date
12-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 2/2020
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01775-3

Other articles of this Issue 2/2020

Computational Mechanics 2/2020 Go to the issue