Skip to main content
Top
Published in: Design Automation for Embedded Systems 3/2018

14-05-2018

A new deep spatial transformer convolutional neural network for image saliency detection

Authors: Xinsheng Zhang, Teng Gao, Dongdong Gao

Published in: Design Automation for Embedded Systems | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we propose a novel deep spatial transformer convolutional neural network (Spatial Net) framework for the detection of salient and abnormal areas in images. The proposed method is general and has three main parts: (1) context information in the image is captured by using convolutional neural networks (CNN) to automatically learn high-level features; (2) to better adapt the CNN model to the saliency task, we redesign the feature sub-network structure to output a 6-dimensional transformation matrix for affine transformation based on the spatial transformer network. Several local features are extracted, which can effectively capture edge pixels in the salient area, meanwhile embedded into the above model to reduce the impact of highlighting background regions; (3) finally, areas of interest are detected by means of the linear combination of global and local feature information. Experimental results demonstrate that Spatial Nets obtain superior detection performance over state-of-the-art algorithms on two popular datasets, requiring less memory and computation to achieve high performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang X, Li Z, Zhou T et al (2012) Neural activities in V1 create a bottom-up saliency map. Neuron 73(1):183–192CrossRef Zhang X, Li Z, Zhou T et al (2012) Neural activities in V1 create a bottom-up saliency map. Neuron 73(1):183–192CrossRef
2.
go back to reference Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259CrossRef Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259CrossRef
4.
go back to reference Cheng M, Mitra NJ, Huang X et al (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582CrossRef Cheng M, Mitra NJ, Huang X et al (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582CrossRef
5.
go back to reference Rahtu E, Kannala J, Salo M et al (2010) Segmenting salient objects from images and videos. In: ECCV2010, pp 366–379 Rahtu E, Kannala J, Salo M et al (2010) Segmenting salient objects from images and videos. In: ECCV2010, pp 366–379
6.
go back to reference Vig E, Dorr M, Cox D (2014) Large-scale optimization of hierarchical features for saliency prediction in natural images. Comput Vis Pattern Recognit 2014:2798–2805 Vig E, Dorr M, Cox D (2014) Large-scale optimization of hierarchical features for saliency prediction in natural images. Comput Vis Pattern Recognit 2014:2798–2805
7.
go back to reference Zhou A, Yao A, Guo Y et al (2017) Incremental network quantization: towards lossless CNNs with low-precision weights. arXiv preprint arXiv:1702.03044 Zhou A, Yao A, Guo Y et al (2017) Incremental network quantization: towards lossless CNNs with low-precision weights. arXiv preprint arXiv:​1702.​03044
8.
go back to reference Li G, Yu Y (2016) Visual saliency detection based on multiscale deep CNN features. IEEE Trans Image Process 25(11):5012–5024MathSciNetCrossRef Li G, Yu Y (2016) Visual saliency detection based on multiscale deep CNN features. IEEE Trans Image Process 25(11):5012–5024MathSciNetCrossRef
9.
go back to reference Imamoglu N, Zhang C, Shimoda W et al (2017) Saliency detection by forward and backward cues in deep-CNNs. arXiv preprint arXiv:1703.00152 Imamoglu N, Zhang C, Shimoda W et al (2017) Saliency detection by forward and backward cues in deep-CNNs. arXiv preprint arXiv:​1703.​00152
10.
go back to reference He S, Lau RW, Liu W et al (2015) Supercnn: a superpixelwise convolutional neural network for salient object detection. Int J Comput Vis 115(3):330–344MathSciNetCrossRef He S, Lau RW, Liu W et al (2015) Supercnn: a superpixelwise convolutional neural network for salient object detection. Int J Comput Vis 115(3):330–344MathSciNetCrossRef
11.
12.
go back to reference Sarvadevabhatla RK, Surya S, Kruthiventi SS, Babu RV et al (2016) SwiDeN: convolutional neural networks for depiction invariant object recognition. In: ACM multimedia, vol 1, pp 187–191 Sarvadevabhatla RK, Surya S, Kruthiventi SS, Babu RV et al (2016) SwiDeN: convolutional neural networks for depiction invariant object recognition. In: ACM multimedia, vol 1, pp 187–191
13.
go back to reference Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. Neural Inf Process Syst 2013(1):2553–2561 Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. Neural Inf Process Syst 2013(1):2553–2561
14.
go back to reference Li H, Chen J, Lu H et al (2017) CNN for saliency detection with low-level feature integration. Neurocomputing 226(22):212–220CrossRef Li H, Chen J, Lu H et al (2017) CNN for saliency detection with low-level feature integration. Neurocomputing 226(22):212–220CrossRef
15.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef
17.
go back to reference Xie G-S, Zhang X-Y, Yang W et al (2017) LG-CNN: from local parts to global discrimination for fine-grained recognition. Pattern Recognit 71(1):118–131CrossRef Xie G-S, Zhang X-Y, Yang W et al (2017) LG-CNN: from local parts to global discrimination for fine-grained recognition. Pattern Recognit 71(1):118–131CrossRef
18.
go back to reference Scherer D, Muller A, Behnke S et al (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks 2010 (ICANN2010), pp 92–101 Scherer D, Muller A, Behnke S et al (2010) Evaluation of pooling operations in convolutional architectures for object recognition. In: International conference on artificial neural networks 2010 (ICANN2010), pp 92–101
19.
go back to reference Jaderberg M, Simonyan K, Zisserman A et al (2015) Spatial transformer networks. Neural Inf Process Syst 2015(1):2017–2025 Jaderberg M, Simonyan K, Zisserman A et al (2015) Spatial transformer networks. Neural Inf Process Syst 2015(1):2017–2025
20.
22.
go back to reference Jiang M, Huang S, Duan J et al (2015) Salicon: saliency in context. In: CVPR2015, pp. 1072–1080 Jiang M, Huang S, Duan J et al (2015) Salicon: saliency in context. In: CVPR2015, pp. 1072–1080
23.
go back to reference Xiao J, Hays J, Ehinger KA et al (2010) Sun database: large-scale scene recognition from abbey to zoo. In: CVPR2010, pp 3485–3492 Xiao J, Hays J, Ehinger KA et al (2010) Sun database: large-scale scene recognition from abbey to zoo. In: CVPR2010, pp 3485–3492
25.
go back to reference Zhang L, Tong MH, Marks TK et al (2008) SUN: a Bayesian framework for saliency using natural statistics. J Vis 8(7):32.1–20CrossRef Zhang L, Tong MH, Marks TK et al (2008) SUN: a Bayesian framework for saliency using natural statistics. J Vis 8(7):32.1–20CrossRef
27.
go back to reference Riche N, Mancas M, Duvinage M et al (2013) RARE2012: a multi-scale rarity-based saliency detection with its comparative statistical analysis. Sig Process Image Commun 28(6):642–658CrossRef Riche N, Mancas M, Duvinage M et al (2013) RARE2012: a multi-scale rarity-based saliency detection with its comparative statistical analysis. Sig Process Image Commun 28(6):642–658CrossRef
28.
go back to reference Xia C, Qi F, Shi G (2016) Bottom-up visual saliency estimation with deep autoencoder-based sparse reconstruction. IEEE Trans Neural Netw Learn Syst 27(6):1227–1240MathSciNetCrossRef Xia C, Qi F, Shi G (2016) Bottom-up visual saliency estimation with deep autoencoder-based sparse reconstruction. IEEE Trans Neural Netw Learn Syst 27(6):1227–1240MathSciNetCrossRef
29.
go back to reference Zhang J, Sclaroff S (2013) Saliency detection: a boolean map approach. In: ICCV2013, pp 153–160 Zhang J, Sclaroff S (2013) Saliency detection: a boolean map approach. In: ICCV2013, pp 153–160
Metadata
Title
A new deep spatial transformer convolutional neural network for image saliency detection
Authors
Xinsheng Zhang
Teng Gao
Dongdong Gao
Publication date
14-05-2018
Publisher
Springer US
Published in
Design Automation for Embedded Systems / Issue 3/2018
Print ISSN: 0929-5585
Electronic ISSN: 1572-8080
DOI
https://doi.org/10.1007/s10617-018-9209-0

Other articles of this Issue 3/2018

Design Automation for Embedded Systems 3/2018 Go to the issue

Premium Partner