Skip to main content
Top
Published in: Journal of Nanoparticle Research 5/2021

01-05-2021 | Research paper

A new route for fast synthesis of copper nanowires and application on flexible transparent conductive films

Authors: Ting Lin, Sze Kee Tam, Xijun Hu, Ka Ming Ng

Published in: Journal of Nanoparticle Research | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Copper nanowires (CuNWs) have been attracting a lot of attention as an alternative to silver nanowires for next generation transparent conductors because of their favorable electric conductivity, mechanical properties, abundance, and low cost. Here, we report a new route using copper hydroxide as precursor, diethylenetriamine as complexing agent, and glucose as reducing agent, by which CuNWs can be acquired within a short reaction time of 10 min and a mild temperature of around 80℃. The effect of reaction temperature, copper precursor concentration, and glucose concentration on the morphology and dimensions of the synthesized CuNWs were investigated. CuNWs of 37 nm in diameter and 17 µm in length were incorporated in an ethylene vinyl acetate (EVA)-coated transparent conductive film, which offered a relative visible light transmission of 91% and a sheet resistance of 48 Ω/sq.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Park J, Hyun BG, An BW, Im H-G, Park Y-G, Jang J, Park J-U, Bae B-S (2017) Flexible transparent conductive films with high performance and reliability using hybrid structures of continuous metal nanofiber networks for flexible optoelectronics. ACS Appl Mater Interfaces 9(24):20299–20305. https://doi.org/10.1021/acsami.7b04314CrossRef Park J, Hyun BG, An BW, Im H-G, Park Y-G, Jang J, Park J-U, Bae B-S (2017) Flexible transparent conductive films with high performance and reliability using hybrid structures of continuous metal nanofiber networks for flexible optoelectronics. ACS Appl Mater Interfaces 9(24):20299–20305. https://​doi.​org/​10.​1021/​acsami.​7b04314CrossRef
go back to reference Kou P, Yang L, Chang C, He S (2017) Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach. Sci Rep 7:42052CrossRef Kou P, Yang L, Chang C, He S (2017) Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach. Sci Rep 7:42052CrossRef
go back to reference Lee M, Ko Y, Min BK, Jun Y (2016) Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate. Chemsuschem 9(1):31–35CrossRef Lee M, Ko Y, Min BK, Jun Y (2016) Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate. Chemsuschem 9(1):31–35CrossRef
go back to reference Maruyama T, Fukui K (1991) Indium-tin oxide thin films prepared by chemical vapor deposition. J Appl Phys 70(7):3848–3851CrossRef Maruyama T, Fukui K (1991) Indium-tin oxide thin films prepared by chemical vapor deposition. J Appl Phys 70(7):3848–3851CrossRef
go back to reference Ma Y, Zhi L (2019) Graphene-based transparent conductive films: material systems, preparation and applications. Small Methods 3(1):1800199CrossRef Ma Y, Zhi L (2019) Graphene-based transparent conductive films: material systems, preparation and applications. Small Methods 3(1):1800199CrossRef
go back to reference Yu L, Shearer C, Shapter J (2016) Recent development of carbon nanotube transparent conductive films. Chem Rev 116(22):13413–13453CrossRef Yu L, Shearer C, Shapter J (2016) Recent development of carbon nanotube transparent conductive films. Chem Rev 116(22):13413–13453CrossRef
go back to reference Dauzon E, Lin Y, Faber H, Yengel E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD (2020) Stretchable and transparent conductive PEDOT: PSS‐based electrodes for organic photovoltaics and strain sensors applications. Adv Funct Mater 30(28):2001251 Dauzon E, Lin Y, Faber H, Yengel E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD (2020) Stretchable and transparent conductive PEDOT: PSS‐based electrodes for organic photovoltaics and strain sensors applications. Adv Funct Mater 30(28):2001251
go back to reference Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato J-P (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):452001CrossRef Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato J-P (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):452001CrossRef
go back to reference Matula RA (1979) Electrical resistivity of copper, gold, palladium, and silver. J Phys Chem Ref Data 8(4):1147–1298CrossRef Matula RA (1979) Electrical resistivity of copper, gold, palladium, and silver. J Phys Chem Ref Data 8(4):1147–1298CrossRef
go back to reference An S, Jo HS, Kim DY, Lee HJ, Ju BK, Al-Deyab SS, Ahn JH, Qin Y, Swihart MT, Yarin AL (2016) Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Adv Mater 28(33):7149–7154CrossRef An S, Jo HS, Kim DY, Lee HJ, Ju BK, Al-Deyab SS, Ahn JH, Qin Y, Swihart MT, Yarin AL (2016) Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Adv Mater 28(33):7149–7154CrossRef
go back to reference Stepniowski WJ, Moneta M, Karczewski K, Michalska-Domanska M, Czujko T, Mol JM, Buijnsters JG (2018) Fabrication of copper nanowires via electrodeposition in anodic aluminum oxide templates formed by combined hard anodizing and electrochemical barrier layer thinning. J Electroanal Chem 809:59–66CrossRef Stepniowski WJ, Moneta M, Karczewski K, Michalska-Domanska M, Czujko T, Mol JM, Buijnsters JG (2018) Fabrication of copper nanowires via electrodeposition in anodic aluminum oxide templates formed by combined hard anodizing and electrochemical barrier layer thinning. J Electroanal Chem 809:59–66CrossRef
go back to reference Fu Q-Q, Li Y-D, Li H-H, Xu L, Wang Z-H, Yu S-H (2019) In situ seed-mediated high-yield synthesis of copper nanowires on large scale. Langmuir 35(12):4364–4369CrossRef Fu Q-Q, Li Y-D, Li H-H, Xu L, Wang Z-H, Yu S-H (2019) In situ seed-mediated high-yield synthesis of copper nanowires on large scale. Langmuir 35(12):4364–4369CrossRef
go back to reference Ye S, Stewart IE, Chen Z, Li B, Rathmell AR, Wiley BJ (2016) How copper nanowires grow and how to control their properties. Acc Chem Res 49(3):442–451CrossRef Ye S, Stewart IE, Chen Z, Li B, Rathmell AR, Wiley BJ (2016) How copper nanowires grow and how to control their properties. Acc Chem Res 49(3):442–451CrossRef
go back to reference Rathmell AR, Bergin SM, Hua YL, Li ZY, Wiley BJ (2010) The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22(32):3558–3563CrossRef Rathmell AR, Bergin SM, Hua YL, Li ZY, Wiley BJ (2010) The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22(32):3558–3563CrossRef
go back to reference Rathmell AR, Wiley BJ (2011) The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv Mater 23(41):4798–4803CrossRef Rathmell AR, Wiley BJ (2011) The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv Mater 23(41):4798–4803CrossRef
go back to reference Bobinger M, Mock J, La Torraca P, Becherer M, Lugli P, Larcher L (2017) Tailoring the aqueous synthesis and deposition of copper nanowires for transparent electrodes and heaters. Adv Mater Interfaces 4(20):1700568CrossRef Bobinger M, Mock J, La Torraca P, Becherer M, Lugli P, Larcher L (2017) Tailoring the aqueous synthesis and deposition of copper nanowires for transparent electrodes and heaters. Adv Mater Interfaces 4(20):1700568CrossRef
go back to reference Sun Y, Du C, Wu M, Zhao L, Yu S, Gong B, Ding Q (2020) Synchronously improved reliability, figure of merit and adhesion of flexible copper nanowire networks by chitosan transition. Nanotechnology 31(37):375303CrossRef Sun Y, Du C, Wu M, Zhao L, Yu S, Gong B, Ding Q (2020) Synchronously improved reliability, figure of merit and adhesion of flexible copper nanowire networks by chitosan transition. Nanotechnology 31(37):375303CrossRef
go back to reference Yu S, Li J, Zhao L, Wu M, Dong H, Li L (2021) Simultaneously enhanced performances of flexible CuNW networks by covering ATO layer for polymer solar cells. Sol Energy Mater Sol Cells 221:110885CrossRef Yu S, Li J, Zhao L, Wu M, Dong H, Li L (2021) Simultaneously enhanced performances of flexible CuNW networks by covering ATO layer for polymer solar cells. Sol Energy Mater Sol Cells 221:110885CrossRef
go back to reference Xiang H, Guo T, Xu M, Lu H, Liu S, Yu G (2018) Ultrathin copper nanowire synthesis with tunable morphology using organic amines for transparent conductors. ACS Appl Nano Mater 1(8):3754–3759CrossRef Xiang H, Guo T, Xu M, Lu H, Liu S, Yu G (2018) Ultrathin copper nanowire synthesis with tunable morphology using organic amines for transparent conductors. ACS Appl Nano Mater 1(8):3754–3759CrossRef
go back to reference Cui F, Dou L, Yang Q, Yu Y, Niu Z, Sun Y, Liu H, Dehestani A, Schierle-Arndt K, Yang P (2017) Benzoin radicals as reducing agent for synthesizing ultrathin copper nanowires. J Am Chem Soc 139(8):3027–3032CrossRef Cui F, Dou L, Yang Q, Yu Y, Niu Z, Sun Y, Liu H, Dehestani A, Schierle-Arndt K, Yang P (2017) Benzoin radicals as reducing agent for synthesizing ultrathin copper nanowires. J Am Chem Soc 139(8):3027–3032CrossRef
go back to reference Zhao L, Yu S, Li X, Wu M, Li L (2019) High-performance flexible transparent conductive films based on copper nanowires with electroplating welded junctions. Sol Energy Mater Sol Cells 201:110067CrossRef Zhao L, Yu S, Li X, Wu M, Li L (2019) High-performance flexible transparent conductive films based on copper nanowires with electroplating welded junctions. Sol Energy Mater Sol Cells 201:110067CrossRef
go back to reference Pflaum RT, Brandt WW (1954) Metal-amine coördination compounds. I. Copper (II) complexes. J Am Chem Soc 76:6215–6219CrossRef Pflaum RT, Brandt WW (1954) Metal-amine coördination compounds. I. Copper (II) complexes. J Am Chem Soc 76:6215–6219CrossRef
go back to reference Kevin M, Lim GY, Ho G (2015) Facile control of copper nanowire dimensions via the Maillard reaction: using food chemistry for fabricating large-scale transparent flexible conductors. Green Chem 17(2):1120–1126CrossRef Kevin M, Lim GY, Ho G (2015) Facile control of copper nanowire dimensions via the Maillard reaction: using food chemistry for fabricating large-scale transparent flexible conductors. Green Chem 17(2):1120–1126CrossRef
go back to reference Bergin SM, Chen Y-H, Rathmell AR, Charbonneau P, Li Z-Y, Wiley BJ (2012) The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4(6):1996–2004CrossRef Bergin SM, Chen Y-H, Rathmell AR, Charbonneau P, Li Z-Y, Wiley BJ (2012) The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4(6):1996–2004CrossRef
go back to reference Ye S, Rathmell AR, Chen Z, Stewart IE, Wiley BJ (2014a) Metal nanowire networks: the next generation of transparent conductors. Adv Mater 26(39):6670–6687CrossRef Ye S, Rathmell AR, Chen Z, Stewart IE, Wiley BJ (2014a) Metal nanowire networks: the next generation of transparent conductors. Adv Mater 26(39):6670–6687CrossRef
go back to reference Ye S, Rathmell AR, Stewart IE, Ha Y-C, Wilson AR, Chen Z, Wiley BJ (2014b) A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem Commun 50(20):2562–2564CrossRef Ye S, Rathmell AR, Stewart IE, Ha Y-C, Wilson AR, Chen Z, Wiley BJ (2014b) A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem Commun 50(20):2562–2564CrossRef
go back to reference Lotty O, Hobbs R, O’Regan C, Hlina J, Marschner C, O’Dwyer C, Petkov N, Holmes JD (2013) Self-seeded growth of germanium nanowires: coalescence and Ostwald Ripening. Chem Mater 25(2):215–222CrossRef Lotty O, Hobbs R, O’Regan C, Hlina J, Marschner C, O’Dwyer C, Petkov N, Holmes JD (2013) Self-seeded growth of germanium nanowires: coalescence and Ostwald Ripening. Chem Mater 25(2):215–222CrossRef
go back to reference Jin M, He G, Zhang H, Zeng J, Xie Z, Xia Y (2011) Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew Chem Int Ed 50(45):10560–10564CrossRef Jin M, He G, Zhang H, Zeng J, Xie Z, Xia Y (2011) Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew Chem Int Ed 50(45):10560–10564CrossRef
go back to reference Zhang D, Wang R, Wen M, Weng D, Cui X, Sun J, Li H, Lu Y (2012) Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc 134(35):14283–14286CrossRef Zhang D, Wang R, Wen M, Weng D, Cui X, Sun J, Li H, Lu Y (2012) Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc 134(35):14283–14286CrossRef
go back to reference Mutiso RM, Winey KI (2013) Electrical percolation in quasi-two-dimensional metal nanowire networks for transparent conductors. Phys Rev E 88(3):032134CrossRef Mutiso RM, Winey KI (2013) Electrical percolation in quasi-two-dimensional metal nanowire networks for transparent conductors. Phys Rev E 88(3):032134CrossRef
Metadata
Title
A new route for fast synthesis of copper nanowires and application on flexible transparent conductive films
Authors
Ting Lin
Sze Kee Tam
Xijun Hu
Ka Ming Ng
Publication date
01-05-2021
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 5/2021
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-021-05239-9

Other articles of this Issue 5/2021

Journal of Nanoparticle Research 5/2021 Go to the issue

Premium Partners