Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

A new smoothing modified three-term conjugate gradient method for \(l_{1}\)-norm minimization problem

Authors: Shouqiang Du, Miao Chen

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider a kind of nonsmooth optimization problems with \(l_{1}\)-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak–Ribière–Polyak conjugate gradient method. For the Polak–Ribière–Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

In this paper, we consider the following nonsmooth optimization problems with \(l_{1}\)-norm minimization problem
$$ \min_{x \in R^{n}}\frac{1}{2}\|Ax - b\|_{2}^{2} + \tau \|x\|_{1}, $$
(1)
where \(x \in R^{n}\), \(A \in R^{m \times n}\) (\(m \ll n\)), \(b \in R^{m}\), \(\tau> 0\), \(\Vert v \Vert _{2}\) denotes the Euclidean norm of v and \(\|v\|_{1} = \sum_{i = 1}^{n} |v_{i}|\) is the \(l_{1}\)-norm of v. This problem is widely used in compressed sensing, signal reconstruction, analog-to-information conversion and related to many mathematical problems [116]. Problem (1) is also a typical compressed sensing scenario, which can reconstruct a length-n sparse signal from m observations. From the Bayesian perspective, problem (1) can also be seen as a maximum a posteriori criterion for estimating x from observations \(b = Ax + \omega\), where ω is the Gaussian noise of variance \(\sigma^{2}\). Many researchers have studied the numerical algorithms, which can be used to solve problem (1) with large-scale data such as fixed point method [1], gradient projection method for sparse reconstruction [2], interior-point continuation method [3, 4], iterative shrinkage thresholds algorithms in [5, 6], linearized Bregman method [7, 8], alternating direction algorithms [9], nonsmooth equations-based method [10] and some related methods [11, 12]. Just recently, a smoothing gradient method has been given for solving problem (1) based on the new transformed absolute value equations in [14, 15]. The transformation is based on the equivalence between a linear complementarity problem and an absolute value equation problem [17, 18]. The complementarity problem, the absolute value equation problem, and the related constrained optimization problem are three kinds of important optimization problems [1923]. On the other hand, the nonlinear conjugate gradient methods and smoothing methods are used widely to solve large-scale optimization problems [24, 25], total variation image restoration [26], monotone nonlinear equations with convex constraints [27], and nonsmooth optimization problems, such as nonsmooth nonconvex problems [28], minimax problem [29], P0 nonlinear complementarity problems [30]. Specially, the effectiveness of widely used and attained different numerical outcomes three-term conjugate gradient method, which is based on Hang–Zhang conjugate gradient method and Polak–Ribière–Polyak conjugate gradient method [3133], has been widely studied. Based on the above analysis, in this paper, we propose a new smoothing modified three-term conjugate gradient method to solve problem (1). The global convergence analysis of the proposed method is also presented.
The remainder of this paper is organized as follows. In Sect. 2, we give the transformation of problem (1), which includes the transformation of a linear complementarity problem transformed into an absolute value equation problem. In Sect. 3, we present the smoothing modified three-term conjugate gradient method and give the convergence analysis of it. Finally, we give some numerical results of the given method which show the effectiveness of it.

2 Results: the transformation of the problem

In this section, as in [9, 10, 14, 15], we set
$${x} = {u} - {v},\quad{u}\geq0,{v}\geq0, $$
where \({u}_{{i}} = ({x}_{{i}})_{ +} \) and \({v}_{{i}} = ( - {x}_{{i}})_{ +} \) for all \({i} = 1,2, \ldots, {n}\) with \(({x}_{{i}})_{ +} = \max\{ x_{i},0\}\). And we also have \(\Vert {x} \Vert _{1} = 1_{n}^{T}u + 1_{n}^{T}v\), where \(1_{n} = [1,1, \ldots,1]^{T}\) is an n-dimensional vector with n ones. Thus, problem (1) can be transformed into the following problem:
$$\min_{z = (u,v)^{T} \ge0}\frac{1}{2}\|b - Az\|_{2}^{2} + \tau 1_{n}^{T}u + \tau1_{n}^{T}v, $$
i.e.,
$$ \min_{z \ge0}\frac{1}{2}z^{T}Hz + c^{T}z, $$
(2)
where
$$z = (u,v)^{T},\qquad c = \tau1_{2n} + \left ( \textstyle\begin{array}{c} - {c} ^{ -} \\ {c} ^{ -} \end{array}\displaystyle \right ),\qquad c = A^{T}b,\qquad H = \left ( \textstyle\begin{array}{c@{\quad}c} A^{T}A & - A^{T}A \\ - A^{T}A & A^{T}A \end{array}\displaystyle \right ). $$
Since H is a positive semi-definite matrix, problem (2) can be translated into a linear variable inequality problem, which is to find \(z \in R^{2n}\) such that
$$ \langle Hz + c,\tilde{z} - z \rangle\ge0, \quad\forall\tilde{z} \ge0. $$
(3)
By the feasible structure of the feasible region of z, problem (3) is equivalent to the linear complementary problem, which to find \(z \in R^{2n}\) such that
$$ z \ge0,\qquad Hz + c \ge0,\qquad z^{T}(Hz + c) = 0. $$
(4)
Due to the equivalence of linear complementarity problems and absolute value equation problems, problem (4) can be transformed into the following absolute value equation problem, which is defined by
$$(H + I)z + c = \big|(H - I)z + c\big|. $$
Then problem (1) can be transformed into the following problem:
$$ \min_{z \in R^{2n}}f(z) = \frac{1}{2}\big\| (H + I)z + c - \big|(H - I)z + c\big|\big\| ^{2}. $$
(5)

3 Main results and discussions

In this section, we present the smoothing modified three-term conjugate gradient method to solve problem (1). Firstly, we give the definition of smoothing function and smoothing approximation function of the absolute value function [14, 15, 29].
Definition 1
Let \(f:R^{n} \to R\) be a local Lipschitz continuous function. We call \(\tilde{f}:R^{n} \times R_{ +} \to R\) a smoothing function of f, if
$$\lim_{\mu\to0}\tilde{f} (x) = f(x), $$
where \(f_{\mu} ( \cdot)\) is continuously differentiable in \(R^{n}\) for any fixed \(\mu> 0\).
The smoothing function of the absolute value function is defined by
$$ \Phi_{i\mu} (z) = \sqrt{\bigl((H - I)z + c\bigr)_{i}^{2} + \mu^{2}} ,\quad\mu\in R_{ +} , i = 1,2, \ldots,2n, $$
(6)
and satisfies
$$\lim_{\mu\to0}\Phi_{i\mu} (z) = \big|\bigl((H - I)z + c \bigr)_{i}\big|,\quad i = 1,2, \ldots,2n. $$
Based on (6), we obtain the following unconstrained optimization problem:
$$\min_{z \in R^{2n}}\bar{f}_{\mu} (z) = \frac{1}{2}\sum _{i = 1}^{2n} \bar{f}_{i\mu}^{2} (z), $$
where \(\bar{f}_{i\mu}(z) = ((H + I)z + c)_{i} - \Phi_{i\mu} (z)\) is a smoothing function of \(f(z)\) in (5) for \(i = 1,2, \ldots,2n\).
Now, we give the smoothing modified three-term conjugate gradient method.
Algorithm 1
(Smoothing modified three-term conjugate gradient method)
Step 0.
Choose \(0 < \sigma< 1\), \(0 < \rho< 1\), \(r > 0\), \(\mu= 2\), \(\eta= 1\), \(\varepsilon> 0\), \(\mu_{0} > 1\) and, given an initial point \(z_{0} \in R^{n}\), let \(d_{0} = - \tilde{g}_{0} \), where \(\tilde{g}_{0} = \nabla_{z}\tilde{f} (z_{0},\mu_{0})\).
 
Step 1.
If \(\|\nabla_{{z}}\tilde{f} \| \le \varepsilon\), stop; otherwise, go to Step 2.
 
Step 2.
Compute search direction by using \(\tilde{\beta}_{k}^{\mathrm {BZAU}}\) and \(\tilde{\theta}_{k}^{\mathrm{BZAU}}\), which are defined by
$$\begin{aligned}& \tilde{\beta}_{k}^{\mathrm{BZAU}} = \frac{\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}(\nabla_{Z}\tilde{f}_{\mu} (z_{k}) - \nabla_{Z}\tilde{f}_{\mu} (z_{k - 1}))}{ - \eta \nabla_{Z}\tilde{f}_{\mu} (z_{k - 1})^{T}d_{k - 1} + \mu |\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k - 1}|}, \end{aligned}$$
(7)
$$\begin{aligned}& \tilde{\theta}_{k}^{\mathrm{BZAU}} = \frac{\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k - 1}}{ - \eta\nabla_{Z}\tilde{f}_{\mu} (z_{k - 1})^{T}d_{k - 1} + \mu|\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k - 1}|}, \\& d_{k} = \left \{ \textstyle\begin{array}{l@{\quad}l} - \nabla_{Z}\tilde{f}_{\mu} (z_{k}) & \text{if } k = 0, \\ - \nabla_{Z}\tilde{f}_{\mu} (z_{k}) + \tilde{\beta}_{k}^{\mathrm{BZAU}}d_{k - 1} - \tilde{\theta}_{k}^{\mathrm {BZAU}}y_{k - 1} & \text{if } k \ge1, \end{array}\displaystyle \right . \end{aligned}$$
(8)
where \(y_{k - 1} = \nabla_{Z}\tilde{f}_{\mu} (z_{k}) - \nabla_{Z}\tilde{f}_{\mu} (z_{k - 1})\).
 
Step 3.
Compute \(\alpha_{k}\) by the Armijo line search, where \(\alpha _{k} = \max \{ \rho^{0},\rho^{1},\rho^{2}, \ldots \}\) and \(\rho^{i}\) satisfies
$$ \tilde{f} \bigl(z_{k} + \rho^{i}d_{k}, \mu_{k}\bigr) \le \tilde{f} (z_{k},\mu_{k}) + \sigma \rho^{i}\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k}. $$
(9)
 
Step 4.
Compute \(z_{k + 1} = z_{k} + \alpha_{k}d_{k}\), if \(\|\nabla_{z}\bar{f}(z_{k + 1},\mu_{k})\| \ge r\mu_{k}\), set \(\mu_{k + 1} = \mu_{k}\). Otherwise, let \(\mu_{k + 1} = \sigma \mu_{k}\).
 
Step 5.
Set \(k: = k + 1\) and go to Step 1.
 
Now, we give convergence analysis of Algorithm 1. In order to get the global convergence of Algorithm 1, we give the following assumptions.
Assumption 1
(i)
The level set \(\Omega= \{ z \in R^{2n}|\tilde{f}_{\mu} (z) \le \tilde{f}_{\mu} (z_{0}) \} \) is bounded.
 
(ii)
There exists a positive constant \(L > 0\) such that \(\nabla_{Z}\tilde{f}_{\mu} (z_{k})\) is Lipschitz continuous on an open convex set \(B \subseteq\Omega\) and for any \(z_{1},z_{2} \in B\), i.e.,
$$\big\| \nabla_{Z}\tilde{f}_{\mu} (z_{1}) - \nabla_{Z}\tilde{f}_{\mu} (z_{2})\big\| \le L \big\| z_{1} - z_{2}\big\| . $$
 
(iii)
There exists a positive constant m such that
$$m \Vert d_{x} \Vert ^{2} \le d^{T} \nabla_{z}^{2}\tilde{f}_{\mu} (z_{k})d_{k}, \quad\forall x,d \in R^{n}, $$
where \(\nabla_{z}^{2}\tilde{f}_{\mu} (z_{k})\) is the Hessian matrix of .
 
By Assumption 1, we can see that there exist positive constants \(\gamma> 0\) and b such that
$$\big\| \nabla_{Z}\tilde{f}_{\mu} (z_{k})\big\| \le\gamma,\quad \forall z_{k} \in \Omega $$
and
$$\|z_{1} - z_{2}\| \le b,\quad\forall z_{1},z_{2} \in \Omega. $$
Lemma 1
Suppose \(\{ {z}_{{k}} \}\) and \(\{ {d}_{{k}} \}\) are generated by Algorithm 1, then
$$\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k} = - \bigl\Vert \nabla_{Z}\tilde{f}_{\mu} (z_{k}) \bigr\Vert ^{2} $$
and
$$\bigl\Vert \nabla_{Z}\tilde{f}_{\mu} (z_{k}) \bigr\Vert \le \Vert d_{k} \Vert . $$
Proof
By Algorithm 1, we have
$$d_{k} = - \nabla_{Z}\tilde{f}_{\mu} (z_{k}) + \tilde{\beta}_{k}^{\mathrm{BZAU}}d_{k - 1} - \tilde{\theta}_{k}^{\mathrm {BZAU}}y_{k - 1}. $$
Multiplying both sides of the above equation by \(\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}\), we obtain
$$\begin{aligned} \nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k} ={}& {-} \big\| \nabla_{Z} \tilde{f}_{\mu} (z_{k})\big\| ^{2} + \frac{\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}(\nabla_{Z}\tilde{f}_{\mu} (z_{k}) - \nabla_{Z}\tilde{f}_{\mu} (z_{k - 1}))(\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k - 1})}{ - \eta\nabla_{Z}\tilde{f}_{\mu} (z_{k - 1})^{T}d_{k - 1} + \mu|\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k - 1}|} \\ &- \frac{(\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k - 1}\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}(\nabla_{Z}\tilde{f}_{\mu} (z_{k}) - \nabla_{Z}\tilde{f}_{\mu} (z_{k - 1}))}{ - \eta \nabla_{Z}\tilde{f}_{\mu} (z_{k - 1})^{T}d_{k - 1} + \mu |\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k - 1}|} ,\end{aligned} $$
i.e.,
$$\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k} = - \big\| \nabla_{Z}\tilde{f}_{\mu} (z_{k}) \big\| ^{2}. $$
Now, we have
$$\big|\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k}\big| = \big\| \nabla_{Z}\tilde{f}_{\mu} (z_{k}) \big\| ^{2} $$
and
$$\big|\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k}\big| \le \big\| \nabla_{Z}\tilde{f}_{\mu} (z_{k})\big\| \Vert d_{k} \Vert . $$
By
$$\big\| \nabla_{Z}\tilde{f}_{\mu} (z_{k}) \big\| ^{2} \le \big\| \nabla_{Z}\tilde{f}_{\mu} (z_{k})\big\| \Vert d_{k} \Vert $$
we have
$$\big\| \nabla_{Z}\tilde{f}_{\mu} (z_{k})\big\| \le \Vert d_{k} \Vert . $$
Hence, the proof is complete. □
Lemma 2
Suppose Assumption 1 holds and \(\{ {z}_{{k}} \}\) and \(\{ {d}_{{k}} \}\) are generated by Algorithm 1, then
$$\sum_{k = 0}^{\infty} \frac{(\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k})^{2}}{\|d_{k}\|^{2}} < + \infty $$
and
$$\sum_{k = 0}^{\infty} \frac{\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|^{4}}{\|d_{k}\|^{2}} < + \infty. $$
Proof
Using the techniques similar to lemmas in [3133], we can get this lemma. The description will not be repeated again. □
Lemma 3
Suppose Assumption 1 holds and \(x_{k}\) and \(d_{k}\) are generated by Algorithm 1, then
$$ a_{1}\alpha_{k}\|d_{k}\|^{2} \le- \nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k}, $$
(10)
where \(a_{1} = (1 - \sigma)^{ - 1}(m/2)\), m is a positive constant and \(0 < \sigma< 1\).
Proof
By using Taylor’s expansion, we have
$$ \tilde{f} (z_{k + 1}) = \tilde{f} (z_{k}) + \nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}s_{k} + \frac{1}{2}s_{k}^{T}G_{k}s_{k}, $$
(11)
where \(s_{k} = z_{k + 1} - z_{k} = \alpha_{k}d_{k}\) and
$$G_{k} = \int_{0}^{1} \nabla_{z}^{2} \tilde{f}_{\mu} (z_{k} + \tau s_{k})\,d\tau s_{k}. $$
By Armijo line search, we know that
$$ \tilde{f} (z_{k + 1}) \le\tilde{f} (z_{k}) + \sigma \nabla_{z}\tilde{f}_{\mu} (z_{k})^{T}s_{k}. $$
(12)
By (11) and (12), we have
$$\frac{1}{2}s_{k}^{T}G_{k}s_{k} \le(1 - \sigma) \bigl( - \nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}s_{k}\bigr), $$
i.e.,
$$\frac{1}{2}(1 - \sigma)^{ - 1}m\alpha_{k} \|d_{k}\|^{2} \le- \nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k}. $$
Denote \(a_{1} = (1 - \sigma)^{ - 1}(m/2)\), we get (10). Thus, we complete the proof. □
By Lemmas 1, 2, and 3, we can get global convergence of the given method, i.e., the following theorem.
Theorem 1
Suppose Assumption 1 holds, then
$$\lim_{k \to\infty} \big\| \nabla_{Z}\tilde{f}_{\mu} (z_{k})\big\| = 0. $$
Proof
From Assumption 1, (7), and (10), we have
$$\begin{aligned}& \big|\tilde{\beta}_{k}^{\mathrm{BZAU}}\big| \le \biggl\vert \frac{\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}(\nabla_{Z}\tilde{f}_{\mu} (z_{k}) - \nabla_{Z}\tilde{f}_{\mu} (z_{k - 1}))}{\eta( - \nabla_{Z}\tilde{f}_{\mu} (z_{k - 1})^{T}d_{k - 1})} \biggr\vert \le\frac{\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|L\alpha_{k - 1}\|d_{k - 1}\|}{\eta(a_{1}\alpha_{k - 1}\|d_{k - 1}\|^{2})}, \\& \big|\tilde{\beta}_{k}^{\mathrm{BZAU}}\big|\|d_{k - 1}\| \le \biggl( \frac{L\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|}{\eta (a_{1}\|d_{k - 1}\|)}\biggr)\|d_{k - 1}\|=\frac{L\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|}{\eta a_{1}}, \end{aligned}$$
(13)
i.e.,
$$\big|\tilde{\theta}_{k}^{\mathrm{BZAU}}\big|\|y_{k - 1}\| \le \bigg| \frac{\nabla_{Z}\tilde{f}_{\mu} (z_{k})^{T}d_{k - 1}}{\eta( - \nabla_{Z}\tilde{f}_{\mu} (z_{k - 1})^{T}d_{k - 1})} \bigg|\| y_{k - 1}\|. $$
From Assumption 1, (8), and (10), we have
$$ \big|\tilde{\theta}_{k}^{\mathrm{BZAU}}\big|\|y_{k - 1}\| \le \biggl( \frac{\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|L\|x_{k} - x_{k - 1}\|}{\eta(a_{1}\alpha_{k - 1}\|d_{k - 1}\|^{2})}\biggr)\|d_{k - 1}\| = \frac{L\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|}{\eta a_{1}}. $$
(14)
Combining (13), (14), and \(d_{k}\) generated in Algorithm 1, we obtain
$$\begin{aligned} \|d_{k}\| &\le\big\| \nabla_{Z}\tilde{f}_{\mu} (z_{k})\big\| + \bigl\vert \tilde{\beta}_{k}^{\mathrm{BZAU}} \big\vert \|d_{k - 1}\| + \bigr\vert \tilde{\theta}_{k}^{\mathrm{BZAU}} \big\vert \|y_{k - 1}\| \\ &\le\big\| \nabla_{Z}\tilde{f}_{\mu} (z_{k})\big\| + \frac{L\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|}{\eta a_{1}}+\frac{L\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|}{\eta a_{1}} \\ &=\biggl(1 + \frac{2L}{\eta a_{1}}\biggr)\big\| \nabla_{Z} \tilde{f}_{\mu} (z_{k})\big\| .\end{aligned} $$
Denote \(\sqrt{B} = (1 + \frac{2L}{\eta a_{1}})\), we have \(\|d_{k}\|^{2} \le B\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|^{2}\), i.e.,
$$\frac{1}{\|d_{k}\|^{2}} \ge \frac{1}{B\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|^{2}} $$
and
$$\frac{B\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|^{4}}{\|d_{k}\|^{2}} \ge \frac{\|\nabla_{Z}\tilde{f}_{\mu} (z_{k})\|^{4}}{\|\tilde{g}_{k}\|^{2}} =\big\| \nabla_{Z} \tilde{f}_{\mu} (z_{k})\big\| ^{2} $$
By Lemma 2, we have
$$\sum_{k = 0}^{\infty} \big\| \nabla_{Z} \tilde{f}_{\mu} (z_{k})\big\| ^{2} < + \infty. $$
This completes the proof. □

4 Numerical experiments

In this section, we give some numerical experiments of Algorithm 1, which are also considered in [2, 9, 10, 14, 15]. We compare Algorithm 1 with smoothing gradient method, GPSR method, debiased and minimum norm methods proposed in [2, 9, 10, 14] respectively. The numerical results of all the examples show that Algorithm 1 is effective. All codes run in MATLAB 8.0. For Examples 1 and 2, the parameters used in Algorithm 1 are chosen as \(\sigma= 0.2\), \(\mu= 5\), \(\eta= 2\), \(\gamma= 0.5\), \(\varepsilon= 10^{ - 6}\), \(\rho= 0.4\).
Example 1
Consider
$$A = \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 3 & 5 & 8 & 4 & 1 & 5 \\ 2 & 9 & 6 & 5 & 7 & 4 \\ 3 & 4 & 7 & 2 & 1 & 6 \\ 8 & 9 & 6 & 5 & 7 & 4 \end{array}\displaystyle \right ),\qquad b = ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} 2 & 4 & 1 & 7 \end{array}\displaystyle )^{T}, $$
and \(\tau= 5\).
From [14], we know that this example has a solution \({x}^{*} = (0.3461,0.0850,0,0,0.3719,0)^{{T}}\). The optimal solution of Algorithm 1 is \({x}^{*} = ( 0.3459, 0.0850,0.0001, 0.0009,0.3717, - 0.0001)^{{T}}\). In Figs. 1 and 2, we plot the evolution of the objective function versus the number of iterations when solving Example 1 with Algorithm 1 and the smoothing gradient method respectively.
Example 2
Consider
$$\begin{gathered} A = \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 1 & 1 & 1 & 0 & 0 & 0 & \cdots& 0 & 0 & 0 & 1 & \cdots& 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & \cdots& 0 & 0 & 0 & 1 & \cdots& 1 \\ \vdots& \vdots& \vdots& \vdots& \vdots& \vdots& \cdots& \vdots& \vdots& \vdots& \vdots& \cdots& \vdots\\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots& 1 & 1 & 1 & 1 & \cdots& 1 \end{array}\displaystyle \right )_{m \times n},\\b = ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} 1 & 1 & \cdots& 1 \end{array}\displaystyle )^{T},\end{gathered} $$
and \(\tau= 2\). In this example, we choose \(m = 30\), \(n = 100\). The numerical results are given in Figs. 3 and 4.
Example 3
Consider
$$A = \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 1 & 0 & \cdots& 0 & 1 & 1 & \cdots& 1 \\ 0 & 1 & \cdots& 1 & 0 & 1 & \cdots& 1 \\ \vdots& \vdots& \ddots& \vdots& \vdots& \vdots& \cdots& \vdots\\ 0 & 1 & \cdots& 1 & 0 & 1 & \cdots& 1 \\ 1 & 0 & \cdots& 0 & 1 & 1 & \cdots& 1 \end{array}\displaystyle \right )_{m \times n},\qquad b = ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} 1 & 1 & \cdots& 1 \end{array}\displaystyle )^{T}, $$
and \(\tau= 6\). In this example, we choose \(m = 100\), \(n = 110\). The numerical results are given in Figs. 5 and 6.
Example 4
Consider
$$A = \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} 4 & - 1 & 0 & \cdots& 0 & 1 & \cdots& 1 \\ - 1 & 4 & - 1 & \cdots& \vdots& \vdots& \cdots& \vdots\\ 0 & - 1 & 4 & \ddots& \vdots& \vdots& \cdots& \vdots\\ \vdots& \ddots& \ddots& \ddots& - 1 & \vdots& \cdots& \vdots\\ 0 & \cdots& 0 & - 1 & 4 & 1 & \cdots& 1 \end{array}\displaystyle \right )_{m \times n},\qquad b = ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} 1 & 1 & \cdots& 1 \end{array}\displaystyle )^{T}, $$
and \(\tau= 10\). In this example, we choose \(m = 200\), \(n = 210\). The numerical results are given in Figs. 7 and 8.
Example 5
In this example, we consider a typical compressed sensing problem, which is also considered in [9, 10, 14, 15]. In this example, we choose \(m = 2^{4}\), \(n = 2^{6}\), \(\sigma= 0.5\), \(\rho= 0.4\), \(\gamma= 0.5\), \(\varepsilon= 10^{ - 6}\), \(\mu= 5\), \(\eta= 2\). The original signal contains 520 randomly generated ±1 spikes. Further, the \(m \times n\) matrix A is obtained by first filling it with independent samples of a standard Gaussian distribution and then orthogonalization of its rows. In this example, we choose \(\sigma^{2} = 10^{ - 4}\) and \(\tau= 0.1 \Vert A^{T}y \Vert _{\infty} \) the same as suggested in [14]. The numerical results are shown in Fig. 9.

5 Conclusion

In this paper, we have proposed a new smoothing modified three-term conjugate gradient method for solving \(l_{1}\)-norm nonsmooth problems. Comparing with the smoothing gradient method, GPSR method, and other methods proposed in [2, 9, 10, 14], we can see that the smoothing modified three-term conjugate gradient method is simple and needs small storage. Comparing with the smoothing gradient method proposed in [14], the smoothing modified three-term conjugate gradient method is significantly faster especially in solving large-scale problems.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11671220) and the Natural Science Foundation of Shandong Province (No. ZR2016AM29).

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for \(l_{1}\)-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008) MathSciNetCrossRefMATH Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for \(l_{1}\)-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008) MathSciNetCrossRefMATH
2.
go back to reference Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007) CrossRef Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007) CrossRef
3.
go back to reference Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale \(l_{1}\)-regularized least squares. IEEE J. Sel. Top. Signal Process. 4, 606–617 (2007) CrossRef Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale \(l_{1}\)-regularized least squares. IEEE J. Sel. Top. Signal Process. 4, 606–617 (2007) CrossRef
4.
go back to reference Turlach, B.A., Venables, W.N., Wright, S.J.: Simultaneous variable selection. Technometrics 47(3), 349–363 (2005) MathSciNetCrossRef Turlach, B.A., Venables, W.N., Wright, S.J.: Simultaneous variable selection. Technometrics 47(3), 349–363 (2005) MathSciNetCrossRef
5.
go back to reference Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004) MathSciNetCrossRefMATH Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004) MathSciNetCrossRefMATH
6.
go back to reference Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009) MathSciNetCrossRefMATH Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009) MathSciNetCrossRefMATH
7.
go back to reference Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. Math. Comput. 8(1), 93–111 (2011) MathSciNetMATH Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. Math. Comput. 8(1), 93–111 (2011) MathSciNetMATH
8.
go back to reference Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithm for \(l_{1}\) minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008) MathSciNetCrossRefMATH Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithm for \(l_{1}\) minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008) MathSciNetCrossRefMATH
9.
go back to reference Yang, J., Zhang, Y.: Alternating direction algorithms for \(l_{1}\)-problems in compressive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011) MathSciNetCrossRefMATH Yang, J., Zhang, Y.: Alternating direction algorithms for \(l_{1}\)-problems in compressive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011) MathSciNetCrossRefMATH
10.
go back to reference Xiao, Y.H., Wang, Q.Y., Hu, Q.J.: Non-smooth equations based method for \(l_{1}\)-norm problems with applications to compressed sensing. Nonlinear Anal. 74(11), 3570–3577 (2011) MathSciNetCrossRefMATH Xiao, Y.H., Wang, Q.Y., Hu, Q.J.: Non-smooth equations based method for \(l_{1}\)-norm problems with applications to compressed sensing. Nonlinear Anal. 74(11), 3570–3577 (2011) MathSciNetCrossRefMATH
11.
go back to reference Wakin, M.B., Laska, J.N., Duarte, M.F., Baron, D., Sarvotham, S., Takhar, D., Kelly, K.F., Baraniuk, R.G.: An architecture for compressive imaging. In: 2006 International Conference on Image Processing, pp. 1273–1276 (2006) CrossRef Wakin, M.B., Laska, J.N., Duarte, M.F., Baron, D., Sarvotham, S., Takhar, D., Kelly, K.F., Baraniuk, R.G.: An architecture for compressive imaging. In: 2006 International Conference on Image Processing, pp. 1273–1276 (2006) CrossRef
12.
go back to reference Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2010) CrossRef Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2010) CrossRef
13.
go back to reference Farajzadeh, A.P., Plubtieng, S., Ungchittrakool, K.: On best proximity point theorems without ordering. Abstr. Appl. Anal. 2014, Article ID 130439 (2014) MathSciNet Farajzadeh, A.P., Plubtieng, S., Ungchittrakool, K.: On best proximity point theorems without ordering. Abstr. Appl. Anal. 2014, Article ID 130439 (2014) MathSciNet
14.
go back to reference Chen, Y.Y., Gao, Y., Liu, Z.M., Du, S.Q.: The smoothing gradient method for a kind of special optimization problem. Oper. Res. Trans. 21(2), 119–125 (2017) MATH Chen, Y.Y., Gao, Y., Liu, Z.M., Du, S.Q.: The smoothing gradient method for a kind of special optimization problem. Oper. Res. Trans. 21(2), 119–125 (2017) MATH
15.
go back to reference Chen, M., Du, S.Q.: The smoothing FR conjugate gradient method for solving a kind of nonsmooth optimization problem with \(l_{1}\)-norm. Math. Probl. Eng. 2018, Article ID 5817931 (2018) Chen, M., Du, S.Q.: The smoothing FR conjugate gradient method for solving a kind of nonsmooth optimization problem with \(l_{1}\)-norm. Math. Probl. Eng. 2018, Article ID 5817931 (2018)
16.
go back to reference Wang, Y.J., Zhou, G.L., Caccetta, L., Liu, W.Q.: An alternative Lagrange-dual based algorithm for sparse signal reconstruction. IEEE Trans. Signal Process. 59(4), 1895–1901 (2011) CrossRef Wang, Y.J., Zhou, G.L., Caccetta, L., Liu, W.Q.: An alternative Lagrange-dual based algorithm for sparse signal reconstruction. IEEE Trans. Signal Process. 59(4), 1895–1901 (2011) CrossRef
19.
go back to reference Caccetta, L., Qu, B., Zhou, G.L.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48(1), 45–58 (2011) MathSciNetCrossRefMATH Caccetta, L., Qu, B., Zhou, G.L.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48(1), 45–58 (2011) MathSciNetCrossRefMATH
21.
go back to reference Chen, H.B., Wang, Y.J., Zhao, H.G.: Finite convergence of a projected proximal point algorithm for generalized variational inequalities. Oper. Res. Lett. 40(4), 303–305 (2012) MathSciNetCrossRefMATH Chen, H.B., Wang, Y.J., Zhao, H.G.: Finite convergence of a projected proximal point algorithm for generalized variational inequalities. Oper. Res. Lett. 40(4), 303–305 (2012) MathSciNetCrossRefMATH
22.
go back to reference Chen, Y.Y., Gao, Y.: Two kinds of new Levenberg–Marquardt method for nonsmooth nonlinear complementarity problem. ScienceAsia 40, 89–93 (2014) CrossRef Chen, Y.Y., Gao, Y.: Two kinds of new Levenberg–Marquardt method for nonsmooth nonlinear complementarity problem. ScienceAsia 40, 89–93 (2014) CrossRef
23.
go back to reference Qu, B., Xiu, N.H.: A relaxed extragradient-like method for a class of constrained optimization problem. J. Ind. Manag. Optim. 3(4), 645–654 (2007) MathSciNetCrossRefMATH Qu, B., Xiu, N.H.: A relaxed extragradient-like method for a class of constrained optimization problem. J. Ind. Manag. Optim. 3(4), 645–654 (2007) MathSciNetCrossRefMATH
25.
go back to reference Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999) MathSciNetCrossRefMATH Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999) MathSciNetCrossRefMATH
26.
go back to reference Yu, G.H., Qi, L.Q., Dai, Y.H.: On nonmonotone chambolle gradient projection algorithms for total variation image restoration. J. Math. Imaging Vis. 35(2), 143–154 (2009) MathSciNetCrossRef Yu, G.H., Qi, L.Q., Dai, Y.H.: On nonmonotone chambolle gradient projection algorithms for total variation image restoration. J. Math. Imaging Vis. 35(2), 143–154 (2009) MathSciNetCrossRef
27.
go back to reference Yu, Z.S., Lin, J., Sun, J., Xiao, Y.H., Lin, L.Y., Li, Z.H.: Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59(10), 2416–2423 (2009) MathSciNetCrossRefMATH Yu, Z.S., Lin, J., Sun, J., Xiao, Y.H., Lin, L.Y., Li, Z.H.: Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59(10), 2416–2423 (2009) MathSciNetCrossRefMATH
29.
go back to reference Pang, D.Y., Du, S.Q., Ju, J.J.: The smoothing Fletcher–Reeves conjugate gradient method for solving finite minimax problems. ScienceAsia 42, 40–45 (2016) CrossRef Pang, D.Y., Du, S.Q., Ju, J.J.: The smoothing Fletcher–Reeves conjugate gradient method for solving finite minimax problems. ScienceAsia 42, 40–45 (2016) CrossRef
30.
go back to reference Zhang, L., Wu, S.Y., Gao, T.: Improved smoothing Newton methods for \(P_{0}\) nonlinear complementarity problems. Appl. Math. Comput. 215(1), 324–332 (2009) MathSciNetMATH Zhang, L., Wu, S.Y., Gao, T.: Improved smoothing Newton methods for \(P_{0}\) nonlinear complementarity problems. Appl. Math. Comput. 215(1), 324–332 (2009) MathSciNetMATH
31.
go back to reference Zhang, L., Zhou, W.: On the global convergence of the Hang–Zhang conjugate gradient method with Armijo line search. Acta Math. Sci. 28(5), 840–845 (2008) MathSciNetMATH Zhang, L., Zhou, W.: On the global convergence of the Hang–Zhang conjugate gradient method with Armijo line search. Acta Math. Sci. 28(5), 840–845 (2008) MathSciNetMATH
32.
go back to reference Sun, M., Liu, J.: Three modified Polak–Ribière–Polyak conjugate gradient methods with sufficient descent property. J. Inequal. Appl. 2015, Article ID 125 (2015) CrossRefMATH Sun, M., Liu, J.: Three modified Polak–Ribière–Polyak conjugate gradient methods with sufficient descent property. J. Inequal. Appl. 2015, Article ID 125 (2015) CrossRefMATH
33.
go back to reference Baluch, B., Salleh, Z., Alhawarat, A., Roslan, U.: A new modified three-term conjugate gradient method with sufficient descent property and its global convergence. J. Math. 2017, Article ID 2715854 (2017) MathSciNet Baluch, B., Salleh, Z., Alhawarat, A., Roslan, U.: A new modified three-term conjugate gradient method with sufficient descent property and its global convergence. J. Math. 2017, Article ID 2715854 (2017) MathSciNet
Metadata
Title
A new smoothing modified three-term conjugate gradient method for -norm minimization problem
Authors
Shouqiang Du
Miao Chen
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1696-9

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner