Skip to main content
Top
Published in: Journal of Materials Science 11/2018

28-02-2018 | Energy materials

A new sodium ferrous orthophosphate Na x Fe4(PO4)3 as anode materials for sodium-ion batteries

Authors: Hui Zhang, Yanming Zhao, Mingming Wen, Youzhong Dong, Qinghua Fan, Quan Kuang, Huatao Liu, Xin Lian

Published in: Journal of Materials Science | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new sodium ferrous orthophosphate Na x Fe4(PO4)3 (1.1 ≤ x ≤ 1.2) with P21/n symmetry has been successfully synthesized via a solid-state reaction for the first time. The structure consists of FeO5 pyramids, FeO6 octahedron, and PO4 tetrahedra which form large six-sided tunnels along \( \vec{b} \) direction and three- or four-sided tunnels running along \( \vec{a} \) direction. When evaluated as the anode materials for sodium-ion batteries, the first discharge and charge capacities of 553 and 264 mAh g−1 for Na1.1Fe4(PO4)3/C and 583 and 315 mAh g−1 for Na1.2Fe4(PO4)3/C, respectively, can be obtained at 10 mA g−1 current density. Compared to the Na1.1Fe4(PO4)3/C, Na1.2Fe4(PO4)3/C exhibits a better cycling performance, where the charge capacity of about 100 mAh g−1 can still be maintained after 15 cycles. The electrode kinetics are investigated further by the electrochemical impedance spectroscopy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Kawamoto H, Tamaki W (2011) Trends in supply of lithium resources and demand of the resources for automobiles. NISTEP Science & Technology Foresight Center, Tokyo Kawamoto H, Tamaki W (2011) Trends in supply of lithium resources and demand of the resources for automobiles. NISTEP Science & Technology Foresight Center, Tokyo
3.
go back to reference Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935CrossRef Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935CrossRef
4.
go back to reference Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613CrossRef Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613CrossRef
5.
go back to reference Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16(6):2019–2029CrossRef Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16(6):2019–2029CrossRef
6.
go back to reference Barpanda P, Nishimura SI, Yamada A (2012) High-voltage pyrophosphate cathodes. Adv Energy Mater 2(7):841–859CrossRef Barpanda P, Nishimura SI, Yamada A (2012) High-voltage pyrophosphate cathodes. Adv Energy Mater 2(7):841–859CrossRef
7.
go back to reference Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158(9):A1011–A1014CrossRef Chevrier VL, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158(9):A1011–A1014CrossRef
8.
go back to reference Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Func Mater 23(8):947–958CrossRef Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Func Mater 23(8):947–958CrossRef
9.
go back to reference Xia X, Dahn JR (2012) Study of the reactivity of Na/hard carbon with different solvents and electrolytes. J Electrochem Soc 159(5):A515–A519CrossRef Xia X, Dahn JR (2012) Study of the reactivity of Na/hard carbon with different solvents and electrolytes. J Electrochem Soc 159(5):A515–A519CrossRef
10.
go back to reference Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12(7):3783–3787CrossRef Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12(7):3783–3787CrossRef
11.
go back to reference Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48(56):7070–7072CrossRef Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48(56):7070–7072CrossRef
12.
go back to reference Xu Y, Zhu Y, Liu Y, Wang C (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3(1):128–133CrossRef Xu Y, Zhu Y, Liu Y, Wang C (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3(1):128–133CrossRef
13.
go back to reference Mortazavi M, Deng J, Shenoy VB, Medhekar NV (2013) Elastic softening of alloy negative electrodes for Na-ion batteries. J Power Sour 225:207–214CrossRef Mortazavi M, Deng J, Shenoy VB, Medhekar NV (2013) Elastic softening of alloy negative electrodes for Na-ion batteries. J Power Sour 225:207–214CrossRef
14.
go back to reference Su D, Ahn HJ, Wang G (2013) SnO2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun 49(30):3131–3133CrossRef Su D, Ahn HJ, Wang G (2013) SnO2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun 49(30):3131–3133CrossRef
15.
go back to reference Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2(20):2560–2565CrossRef Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T (2011) Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2(20):2560–2565CrossRef
16.
go back to reference Zhu C, Kopold P, van Aken PA, Maier J, Yu Y (2016) High power-high energy sodium battery based on threefold interpenetrating network. Adv Mater 28(12):2409–2416CrossRef Zhu C, Kopold P, van Aken PA, Maier J, Yu Y (2016) High power-high energy sodium battery based on threefold interpenetrating network. Adv Mater 28(12):2409–2416CrossRef
17.
go back to reference Honma T, Togashi T, Ito N, Komatsu T (2012) Fabrication of Na2FeP2O7 glass–ceramics for sodium ion battery. J Ceram Soc Jpn 120(1404):344–346CrossRef Honma T, Togashi T, Ito N, Komatsu T (2012) Fabrication of Na2FeP2O7 glass–ceramics for sodium ion battery. J Ceram Soc Jpn 120(1404):344–346CrossRef
18.
go back to reference Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6(10):749–753CrossRef Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6(10):749–753CrossRef
19.
go back to reference Essehli R, Belharouak I, Yahia HB, Maher K, Abouimrane A, Orayech B, Calder S, Zhou XL, Zhou Z, Sun Y (2015) Alluaudite Na2Co2Fe(PO4)3 as an electroactive material for sodium ion batteries. Dalton Trans 44(17):7881–7886CrossRef Essehli R, Belharouak I, Yahia HB, Maher K, Abouimrane A, Orayech B, Calder S, Zhou XL, Zhou Z, Sun Y (2015) Alluaudite Na2Co2Fe(PO4)3 as an electroactive material for sodium ion batteries. Dalton Trans 44(17):7881–7886CrossRef
20.
go back to reference Wang X, Hu P, Chen L, Yao Y, Kong Q, Cui G, Shi S, Chen L (2017) An α-CrPO4-type NaV3(PO4)3 anode for sodium-ion batteries with excellent cycling stability and the exploration of sodium storage behavior. J Mater Chem A 5(8):3839–3847CrossRef Wang X, Hu P, Chen L, Yao Y, Kong Q, Cui G, Shi S, Chen L (2017) An α-CrPO4-type NaV3(PO4)3 anode for sodium-ion batteries with excellent cycling stability and the exploration of sodium storage behavior. J Mater Chem A 5(8):3839–3847CrossRef
21.
go back to reference Olsen EJ, Steele IM (1997) Galileiite: a new meteoritic phosphate minera. Meteorit Planet Sci 32(S4):A155–A156CrossRef Olsen EJ, Steele IM (1997) Galileiite: a new meteoritic phosphate minera. Meteorit Planet Sci 32(S4):A155–A156CrossRef
22.
go back to reference Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR, pp 86–748 Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR, pp 86–748
23.
go back to reference Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRef Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRef
24.
go back to reference Stefanidis T, Nord AG (1982) The crystal structure of iron (II) diphosphate, Fe2P2O7. Zeitschrift für Kristallographie-Cryst Mater 159(1–4):255–264 Stefanidis T, Nord AG (1982) The crystal structure of iron (II) diphosphate, Fe2P2O7. Zeitschrift für Kristallographie-Cryst Mater 159(1–4):255–264
25.
go back to reference Warner JK, Cheetham AK, Cox DE (1995) Determination of the cation distribution in NiFe2(PO4)2 using resonant X-ray and neutron powder diffraction. J Appl Crystallogr 28(5):494–502CrossRef Warner JK, Cheetham AK, Cox DE (1995) Determination of the cation distribution in NiFe2(PO4)2 using resonant X-ray and neutron powder diffraction. J Appl Crystallogr 28(5):494–502CrossRef
26.
go back to reference Lu J, Nishimura SI, Yamada A (2017) A Fe-rich sodium iron orthophosphate as cathode material for rechargeable batteries. Electrochem Commun 79:51–54CrossRef Lu J, Nishimura SI, Yamada A (2017) A Fe-rich sodium iron orthophosphate as cathode material for rechargeable batteries. Electrochem Commun 79:51–54CrossRef
27.
go back to reference Baies R, Pérez O, Caignaert V, Pralong V, Raveau B (2006) A new sodium cobaltophosphate with a tunnel structure, ionic conductor. J Mater Chem 16(25):2434–2438CrossRef Baies R, Pérez O, Caignaert V, Pralong V, Raveau B (2006) A new sodium cobaltophosphate with a tunnel structure, ionic conductor. J Mater Chem 16(25):2434–2438CrossRef
28.
go back to reference Young RA (1993) Introduction to the Rietveld method. In: Young RA (ed) The Rietveld method, IUCR monographs on crystallography, vol 5. Oxford University Press, New York, p 21 Young RA (1993) Introduction to the Rietveld method. In: Young RA (ed) The Rietveld method, IUCR monographs on crystallography, vol 5. Oxford University Press, New York, p 21
29.
go back to reference Mekki A, Holland D, McConville CF, Salim M (1996) An XPS study of iron sodium silicate glass surfaces. J Non Cryst Solids 208(3):267–276CrossRef Mekki A, Holland D, McConville CF, Salim M (1996) An XPS study of iron sodium silicate glass surfaces. J Non Cryst Solids 208(3):267–276CrossRef
30.
go back to reference Liu Y, Zhou Y, Zhang J, Xia Y, Chen T, Zhang S (2016) Monoclinic phase Na3Fe2(PO4)3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain Chem Eng 5(2):1306–1314CrossRef Liu Y, Zhou Y, Zhang J, Xia Y, Chen T, Zhang S (2016) Monoclinic phase Na3Fe2(PO4)3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain Chem Eng 5(2):1306–1314CrossRef
31.
go back to reference Niu Y, Xu M, Shen B, Dai C, Li CM (2016) Exploration of Na7Fe4.5(P2O7)4 as a cathode material for sodium-ion batteries. J Mater Chem A 4(42):16531–16535CrossRef Niu Y, Xu M, Shen B, Dai C, Li CM (2016) Exploration of Na7Fe4.5(P2O7)4 as a cathode material for sodium-ion batteries. J Mater Chem A 4(42):16531–16535CrossRef
32.
go back to reference Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1(2):123–128CrossRef Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1(2):123–128CrossRef
33.
go back to reference Tian Y, He Y, Zhang J (2012) Vibrational spectroscopic study of phase segregation in off-stoichiometric LiFePO4-based cathode materials. ECS Electrochem Lett 1(1):A4–A6CrossRef Tian Y, He Y, Zhang J (2012) Vibrational spectroscopic study of phase segregation in off-stoichiometric LiFePO4-based cathode materials. ECS Electrochem Lett 1(1):A4–A6CrossRef
34.
go back to reference Garbarczyk JE, Machowski P, Wasiucionek M, Tykarski L, Bacewicz R, Aleksiejuk A (2000) Studies of silver–vanadate–phosphate glasses by Raman, EPR and impedance spectroscopy methods. Solid State Ion 136:1077–1083CrossRef Garbarczyk JE, Machowski P, Wasiucionek M, Tykarski L, Bacewicz R, Aleksiejuk A (2000) Studies of silver–vanadate–phosphate glasses by Raman, EPR and impedance spectroscopy methods. Solid State Ion 136:1077–1083CrossRef
35.
go back to reference Lewandowska R, Krasowski K, Bacewicz R, Garbarczyk JE (1999) Studies of silver–vanadate superionic glasses using Raman spectroscopy. Solid State Ion 119(1):229–234CrossRef Lewandowska R, Krasowski K, Bacewicz R, Garbarczyk JE (1999) Studies of silver–vanadate superionic glasses using Raman spectroscopy. Solid State Ion 119(1):229–234CrossRef
36.
go back to reference Ashiri R (2013) Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process. Vib Spectrosc 66:24–29CrossRef Ashiri R (2013) Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process. Vib Spectrosc 66:24–29CrossRef
37.
go back to reference Bruni S, Cariati F, Casu M, Lai A, Musinu A, Piccaluga G, Solinas S (1999) IR and NMR study of nanoparticle-support interactions in a Fe2O3–SiO2 nanocomposite prepared by a sol-gel method. Nanostruct Mater 11(5):573–586CrossRef Bruni S, Cariati F, Casu M, Lai A, Musinu A, Piccaluga G, Solinas S (1999) IR and NMR study of nanoparticle-support interactions in a Fe2O3–SiO2 nanocomposite prepared by a sol-gel method. Nanostruct Mater 11(5):573–586CrossRef
38.
go back to reference Kuang Q, Zhao Y, An X, Liu J, Dong Y, Chen L (2010) Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochim Acta 55(5):1575–1581CrossRef Kuang Q, Zhao Y, An X, Liu J, Dong Y, Chen L (2010) Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochim Acta 55(5):1575–1581CrossRef
39.
go back to reference Liu X, Liu H, Zhao Y, Dong Y, Fan Q, Kuang Q (2016) Synthesis of the carbon-coated nanoparticle Co9S8 and its electrochemical performance as an anode material for sodium-ion batteries. Langmuir 32(48):12593–12602CrossRef Liu X, Liu H, Zhao Y, Dong Y, Fan Q, Kuang Q (2016) Synthesis of the carbon-coated nanoparticle Co9S8 and its electrochemical performance as an anode material for sodium-ion batteries. Langmuir 32(48):12593–12602CrossRef
40.
go back to reference He C, Wu S, Zhao N, Shi C, Liu E, Li J (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7(5):4459–4469CrossRef He C, Wu S, Zhao N, Shi C, Liu E, Li J (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7(5):4459–4469CrossRef
Metadata
Title
A new sodium ferrous orthophosphate Na x Fe4(PO4)3 as anode materials for sodium-ion batteries
Authors
Hui Zhang
Yanming Zhao
Mingming Wen
Youzhong Dong
Qinghua Fan
Quan Kuang
Huatao Liu
Xin Lian
Publication date
28-02-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 11/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2128-4

Other articles of this Issue 11/2018

Journal of Materials Science 11/2018 Go to the issue

Premium Partners