Skip to main content
Top
Published in: Health and Technology 6/2022

14-11-2022 | Original Paper

A non-linear time series based artificial intelligence model to predict outcome in cardiac surgery

Authors: Sushant Konar, Nitin Auluck, Rajarajan Ganesan, Atul Kumar Goyal, Tarunpreet Kaur, Mansi Sahi, Tanvir Samra, Shyam Kumar Singh Thingnam, Goverdhan Dutt Puri

Published in: Health and Technology | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Background

Adverse lifestyles have led to increased cardiac complications, further accelerating the burden of cardiac surgeries in tertiary care hospitals. For optimum management of cardiac surgical patients in the hospital, it is essential to have an accurate idea regarding the patients' expected ICU stay and hospital stay. Additionally, forecasting patients’ survival outcome is also essential for ICU management.

Objectives

This study aims to develop artificial intelligence models based on non-linear time-series data of blood pressure and heart rate to predict the ICU stay, hospital stay, and survival outcome of cardiac surgical patients.

Methods

The intraoperative heart rate and blood pressure data of 6064 patients undergoing cardiac surgeries at a single tertiary care hospital were recorded every minute. After data cleaning, the data was split into 781 patients in the train data set and 296 patients in the test data set. Feature engineering and balancing of data were performed on the train data set. Various classification models for survival outcome and regression models for ICU stay and hospital stay were trained using the balanced train data set. These models were tested on the test data set, and the prediction results were evaluated on the following performance metrics: area under the curve (AUC), accuracy, F1-score, RMSE, and R2-score.

Results

The Gaussian Naive Bayes + Logistic Regression (GNB + LR) model is the best for survival analysis, having the highest AUC of 0.72, Accuracy of 83%, and an F1-score of 0.86. The Gradient boosting (GB) model is the best model for the analysis of hospital stay, offering the highest R2-score (0.023). The XGBoost regressor is the best model for ICU stay analysis, offering the highest R2-score (0.125).

Conclusion

Artificial intelligence models based upon the intraoperative time series data were developed to analyse outcomes in cardiac surgery with high accuracy. These models can be used in cardiac surgeries to predict the ICU stay, hospital stay, and overall survival of the patients for better ICU management at the hospital.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lou S-J, Hou M-F, Chang H-T, Lee H-H, Chiu C-C, Yeh S-CJ, et al. Breast Cancer Surgery 10-Year Survival Prediction by Machine Learning: A Large Prospective Cohort Study. Biology. 2021;11(1):47. Lou S-J, Hou M-F, Chang H-T, Lee H-H, Chiu C-C, Yeh S-CJ, et al. Breast Cancer Surgery 10-Year Survival Prediction by Machine Learning: A Large Prospective Cohort Study. Biology. 2021;11(1):47.
2.
go back to reference Kondziolka D, Parry PV, Lunsford LD, Kano H, Flickinger JC, Rakfal S, et al. The accuracy of predicting survival in individual patients with cancer. J Neurosurg. 2014;120(1):24–30.CrossRef Kondziolka D, Parry PV, Lunsford LD, Kano H, Flickinger JC, Rakfal S, et al. The accuracy of predicting survival in individual patients with cancer. J Neurosurg. 2014;120(1):24–30.CrossRef
3.
go back to reference Kaul U, Bhatia V. Perspective on coronary interventions & cardiac surgeries in India. Indian J Med Res. 2010;132(5):543. Kaul U, Bhatia V. Perspective on coronary interventions & cardiac surgeries in India. Indian J Med Res. 2010;132(5):543.
4.
go back to reference Ad N, Holmes SD, Patel J, Pritchard G, Shuman DJ, Halpin L. Comparison of EuroSCORE II, original EuroSCORE, and the Society of Thoracic Surgeons risk score in cardiac surgery patients. Ann Thorac Surg. 2016;102(2):573–9.CrossRef Ad N, Holmes SD, Patel J, Pritchard G, Shuman DJ, Halpin L. Comparison of EuroSCORE II, original EuroSCORE, and the Society of Thoracic Surgeons risk score in cardiac surgery patients. Ann Thorac Surg. 2016;102(2):573–9.CrossRef
5.
go back to reference Van Loon K, Guiza F, Meyfroidt G, Aerts J-M, Ramon J, Blockeel H, et al. Prediction of clinical conditions after coronary bypass surgery using dynamic data analysis. J Med Syst. 2010;34(3):229–39.CrossRef Van Loon K, Guiza F, Meyfroidt G, Aerts J-M, Ramon J, Blockeel H, et al. Prediction of clinical conditions after coronary bypass surgery using dynamic data analysis. J Med Syst. 2010;34(3):229–39.CrossRef
6.
go back to reference Thara D, PremaSudha B, Xiong F. Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques. Pattern Recogn Lett. 2019;128:544–50.CrossRef Thara D, PremaSudha B, Xiong F. Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques. Pattern Recogn Lett. 2019;128:544–50.CrossRef
7.
go back to reference Hegger R, Kantz H, Schreiber T. Practical implementation of nonlinear time series methods: The TISEAN package. Chaos: An Interdisciplinary J Nonlinear Sci. 1999;9(2):413–35. Hegger R, Kantz H, Schreiber T. Practical implementation of nonlinear time series methods: The TISEAN package. Chaos: An Interdisciplinary J Nonlinear Sci. 1999;9(2):413–35.
8.
go back to reference Barandas M, Folgado D, Fernandes L, Santos S, Abreu M, Bota P, et al. TSFEL: Time series feature extraction library. SoftwareX. 2020;11: 100456.CrossRef Barandas M, Folgado D, Fernandes L, Santos S, Abreu M, Bota P, et al. TSFEL: Time series feature extraction library. SoftwareX. 2020;11: 100456.CrossRef
9.
go back to reference Christ M, Braun N, Neuffer J, Kempa-Liehr AW. Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a python package). Neurocomputing. 2018;307:72–7.CrossRef Christ M, Braun N, Neuffer J, Kempa-Liehr AW. Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a python package). Neurocomputing. 2018;307:72–7.CrossRef
10.
go back to reference You J, Lou E, Afrouziyeh M, Zukiwsky NM, Zuidhof MJ. A supervised machine learning method to detect anomalous real-time broiler breeder body weight data recorded by a precision feeding system. Comput Electron Agric. 2021;185: 106171.CrossRef You J, Lou E, Afrouziyeh M, Zukiwsky NM, Zuidhof MJ. A supervised machine learning method to detect anomalous real-time broiler breeder body weight data recorded by a precision feeding system. Comput Electron Agric. 2021;185: 106171.CrossRef
11.
go back to reference Chen J, Huang H, Cohn AG, Zhang D, Zhou M. Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning. Int J Min Sci Technol. 2022;32(2):309–22.CrossRef Chen J, Huang H, Cohn AG, Zhang D, Zhou M. Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning. Int J Min Sci Technol. 2022;32(2):309–22.CrossRef
12.
go back to reference Charbuty B, Abdulazeez A. Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends. 2021;2(01):20–8.CrossRef Charbuty B, Abdulazeez A. Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends. 2021;2(01):20–8.CrossRef
13.
go back to reference Lee TR, Wood WT, Phrampus BJ. A machine learning (kNN) approach to predicting global seafloor total organic carbon. Global Biogeochem Cycles. 2019;33(1):37–46.CrossRef Lee TR, Wood WT, Phrampus BJ. A machine learning (kNN) approach to predicting global seafloor total organic carbon. Global Biogeochem Cycles. 2019;33(1):37–46.CrossRef
14.
go back to reference Reis I, Baron D, Shahaf S. Probabilistic random forest: A machine learning algorithm for noisy data sets. Astron J. 2018;157(1):16.CrossRef Reis I, Baron D, Shahaf S. Probabilistic random forest: A machine learning algorithm for noisy data sets. Astron J. 2018;157(1):16.CrossRef
15.
go back to reference Chen S, Shen B, Wang X, Yoo S-J. A strong machine learning classifier and decision stumps based hybrid adaboost classification algorithm for cognitive radios. Sensors. 2019;19(23):5077.CrossRef Chen S, Shen B, Wang X, Yoo S-J. A strong machine learning classifier and decision stumps based hybrid adaboost classification algorithm for cognitive radios. Sensors. 2019;19(23):5077.CrossRef
16.
go back to reference Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 2013;7:21.CrossRef Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 2013;7:21.CrossRef
17.
go back to reference Asselman A, Khaldi M, Aammou S. Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interact Learn Environ. 2021:1–20. Asselman A, Khaldi M, Aammou S. Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interact Learn Environ. 2021:1–20.
18.
go back to reference Nusinovici S, Tham YC, Yan MYC, Ting DSW, Li J, Sabanayagam C, et al. Logistic regression was as good as machine learning for predicting major chronic diseases. J Clin Epidemiol. 2020;122:56–69.CrossRef Nusinovici S, Tham YC, Yan MYC, Ting DSW, Li J, Sabanayagam C, et al. Logistic regression was as good as machine learning for predicting major chronic diseases. J Clin Epidemiol. 2020;122:56–69.CrossRef
19.
go back to reference Maulud D, Abdulazeez AM. A review on linear regression comprehensive in machine learning. J Appl Sci Technol Trends. 2020;1(4):140–7.CrossRef Maulud D, Abdulazeez AM. A review on linear regression comprehensive in machine learning. J Appl Sci Technol Trends. 2020;1(4):140–7.CrossRef
20.
go back to reference Hejazi NS, Coyle JR, van der Laan MJ. hal9001: Scalable highly adaptive lasso regression inR. J Open Source Softw. 2020;5(53):2526.CrossRef Hejazi NS, Coyle JR, van der Laan MJ. hal9001: Scalable highly adaptive lasso regression inR. J Open Source Softw. 2020;5(53):2526.CrossRef
21.
go back to reference Ianni JD, Cao Z, Grissom WA. Machine learning RF shimming: Prediction by iteratively projected ridge regression. Magn Reson Med. 2018;80(5):1871–81.CrossRef Ianni JD, Cao Z, Grissom WA. Machine learning RF shimming: Prediction by iteratively projected ridge regression. Magn Reson Med. 2018;80(5):1871–81.CrossRef
22.
go back to reference Zhang S, Li X, Zong M, Zhu X, Cheng D. Learning k for knn classification. ACM Transactions on Intelligent Systems and Technology (TIST). 2017;8(3):1–19. Zhang S, Li X, Zong M, Zhu X, Cheng D. Learning k for knn classification. ACM Transactions on Intelligent Systems and Technology (TIST). 2017;8(3):1–19.
23.
go back to reference Zhou X, Zhu X, Dong Z, Guo W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal. 2016;4(3):212–9.CrossRef Zhou X, Zhu X, Dong Z, Guo W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal. 2016;4(3):212–9.CrossRef
24.
go back to reference Singh U, Rizwan M, Alaraj M, Alsaidan I. A machine learning-based gradient boosting regression approach for wind power production forecasting: a step towards smart grid environments. Energies. 2021;14(16):5196.CrossRef Singh U, Rizwan M, Alaraj M, Alsaidan I. A machine learning-based gradient boosting regression approach for wind power production forecasting: a step towards smart grid environments. Energies. 2021;14(16):5196.CrossRef
25.
go back to reference Shehadeh A, Alshboul O, Al Mamlook RE, Hamedat O. Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Autom Constr. 2021;129: 103827.CrossRef Shehadeh A, Alshboul O, Al Mamlook RE, Hamedat O. Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Autom Constr. 2021;129: 103827.CrossRef
26.
go back to reference Pourashraf T, Shokri S, Yousefi M, Ahmadi A, Azar PA. Implementing Machine Learning in Laboratory Synthesis by Hybrid of SVR Model and Optimization Algorithms. Adv Theory Simul. 2021;4(11):2100225.CrossRef Pourashraf T, Shokri S, Yousefi M, Ahmadi A, Azar PA. Implementing Machine Learning in Laboratory Synthesis by Hybrid of SVR Model and Optimization Algorithms. Adv Theory Simul. 2021;4(11):2100225.CrossRef
28.
go back to reference Wu J, Chen X-Y, Zhang H, Xiong L-D, Lei H, Deng S-H. Hyperparameter optimization for machine learning models based on Bayesian optimization. J Electron Sci Technol. 2019;17(1):26–40. Wu J, Chen X-Y, Zhang H, Xiong L-D, Lei H, Deng S-H. Hyperparameter optimization for machine learning models based on Bayesian optimization. J Electron Sci Technol. 2019;17(1):26–40.
29.
go back to reference Scavuzzo CM, Scavuzzo JM, Campero MN, Anegagrie M, Aramendia AA, Benito A, et al. Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP. Infect Dis Model. 2022;7(1):262–76. Scavuzzo CM, Scavuzzo JM, Campero MN, Anegagrie M, Aramendia AA, Benito A, et al. Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP. Infect Dis Model. 2022;7(1):262–76.
30.
go back to reference Carrington AM, Manuel DG, Fieguth PW, Ramsay T, Osmani V, Wernly B, et al. Deep roc analysis and auc as balanced average accuracy to improve model selection, understanding and interpretation. arXiv preprint arXiv:210311357. 2021. Carrington AM, Manuel DG, Fieguth PW, Ramsay T, Osmani V, Wernly B, et al. Deep roc analysis and auc as balanced average accuracy to improve model selection, understanding and interpretation. arXiv preprint arXiv:​210311357. 2021.
31.
go back to reference Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci. 2021;7:e623. PubMed PMID: 34307865. Pubmed Central PMCID: PMC8279135. Epub 2021/07/27. eng. Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci. 2021;7:e623. PubMed PMID: 34307865. Pubmed Central PMCID: PMC8279135. Epub 2021/07/27. eng.
32.
go back to reference Fröhlich H, Balling R, Beerenwinkel N, Kohlbacher O, Kumar S, Lengauer T, et al. From hype to reality: data science enabling personalized medicine. BMC Med. 2018;16(1):1–15.CrossRef Fröhlich H, Balling R, Beerenwinkel N, Kohlbacher O, Kumar S, Lengauer T, et al. From hype to reality: data science enabling personalized medicine. BMC Med. 2018;16(1):1–15.CrossRef
33.
go back to reference Kara A, Akin S, Ince C. The response of the microcirculation to cardiac surgery. Curr Opin Anaesthesiol. 2016;29(1):85–93. PubMed PMID: 26658179. Epub 2015/12/15. eng. Kara A, Akin S, Ince C. The response of the microcirculation to cardiac surgery. Curr Opin Anaesthesiol. 2016;29(1):85–93. PubMed PMID: 26658179. Epub 2015/12/15. eng.
34.
go back to reference Yu Y, Peng C, Zhang Z, Shen K, Zhang Y, Xiao J, et al. Machine Learning Methods for Predicting Long-Term Mortality in Patients After Cardiac Surgery. Frontiers in cardiovascular medicine. 2022;9:831390. PubMed PMID: 35592400. Pubmed Central PMCID: PMC9110683. Epub 2022/05/21. eng. Yu Y, Peng C, Zhang Z, Shen K, Zhang Y, Xiao J, et al. Machine Learning Methods for Predicting Long-Term Mortality in Patients After Cardiac Surgery. Frontiers in cardiovascular medicine. 2022;9:831390. PubMed PMID: 35592400. Pubmed Central PMCID: PMC9110683. Epub 2022/05/21. eng.
35.
go back to reference Wu C, Camacho FT, Wechsler AS, Lahey S, Culliford AT, Jordan D, et al. Risk score for predicting long-term mortality after coronary artery bypass graft surgery. Circulation. 2012;125(20):2423–30. PubMed PMID: 22547673. Pubmed Central PMCID: PMC3422677. Epub 2012/05/02. eng. Wu C, Camacho FT, Wechsler AS, Lahey S, Culliford AT, Jordan D, et al. Risk score for predicting long-term mortality after coronary artery bypass graft surgery. Circulation. 2012;125(20):2423–30. PubMed PMID: 22547673. Pubmed Central PMCID: PMC3422677. Epub 2012/05/02. eng.
36.
go back to reference Benedetto U, Dimagli A, Sinha S, Cocomello L, Gibbison B, Caputo M, et al. Machine learning improves mortality risk prediction after cardiac surgery: Systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2022;163(6):2075–87 e9. PubMed PMID: 32900480. Epub 2020/09/10. eng. Benedetto U, Dimagli A, Sinha S, Cocomello L, Gibbison B, Caputo M, et al. Machine learning improves mortality risk prediction after cardiac surgery: Systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2022;163(6):2075–87 e9. PubMed PMID: 32900480. Epub 2020/09/10. eng.
37.
go back to reference Zhou Y, Chen S, Rao Z, Yang D, Liu X, Dong N, et al. Prediction of 1-year mortality after heart transplantation using machine learning approaches: A single-center study from China. Int J Cardiol. 2021;339:21–7. PubMed PMID: 34271025. Epub 2021/07/17. eng. Zhou Y, Chen S, Rao Z, Yang D, Liu X, Dong N, et al. Prediction of 1-year mortality after heart transplantation using machine learning approaches: A single-center study from China. Int J Cardiol. 2021;339:21–7. PubMed PMID: 34271025. Epub 2021/07/17. eng.
38.
go back to reference Ong CS, Reinertsen E, Sun H, Moonsamy P, Mohan N, Funamoto M, et al. Prediction of operative mortality for patients undergoing cardiac surgical procedures without established risk scores. J Thorac Cardiovasc Surg 2021. PubMed PMID: 34607725. Pubmed Central PMCID: PMC8918430. Epub 2021/10/06. eng. Ong CS, Reinertsen E, Sun H, Moonsamy P, Mohan N, Funamoto M, et al. Prediction of operative mortality for patients undergoing cardiac surgical procedures without established risk scores. J Thorac Cardiovasc Surg 2021. PubMed PMID: 34607725. Pubmed Central PMCID: PMC8918430. Epub 2021/10/06. eng.
39.
go back to reference Angraal S, Mortazavi BJ, Gupta A, Khera R, Ahmad T, Desai NR, et al. Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail. 2020;8(1):12–21. PubMed PMID: 31606361. Epub 2019/10/14. eng. Angraal S, Mortazavi BJ, Gupta A, Khera R, Ahmad T, Desai NR, et al. Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail. 2020;8(1):12–21. PubMed PMID: 31606361. Epub 2019/10/14. eng.
40.
go back to reference Koponen T, Karttunen J, Musialowicz T, Pietiläinen L, Uusaro A, Lahtinen P. Vasoactive-inotropic score and the prediction of morbidity and mortality after cardiac surgery. Br J Anaesth. 2019;122(4):428–36. PubMed PMID: 30857599. Pubmed Central PMCID: PMC6435836. Epub 2019/03/13. eng. Koponen T, Karttunen J, Musialowicz T, Pietiläinen L, Uusaro A, Lahtinen P. Vasoactive-inotropic score and the prediction of morbidity and mortality after cardiac surgery. Br J Anaesth. 2019;122(4):428–36. PubMed PMID: 30857599. Pubmed Central PMCID: PMC6435836. Epub 2019/03/13. eng.
41.
go back to reference Ruan T, Lei L, Zhou Y, Zhai J, Zhang L, He P, et al. Representation learning for clinical time series prediction tasks in electronic health records. BMC Med Inform Decis Mak. 2019;19(Suppl 8):259. PubMed PMID: 31842854. Pubmed Central PMCID: PMC6916209. Epub 2019/12/18. eng. Ruan T, Lei L, Zhou Y, Zhai J, Zhang L, He P, et al. Representation learning for clinical time series prediction tasks in electronic health records. BMC Med Inform Decis Mak. 2019;19(Suppl 8):259. PubMed PMID: 31842854. Pubmed Central PMCID: PMC6916209. Epub 2019/12/18. eng.
42.
go back to reference Tsai PF, Chen PC, Chen YY, Song HY, Lin HM, Lin FM, et al. Length of Hospital Stay Prediction at the Admission Stage for Cardiology Patients Using Artificial Neural Network. J Healthc Eng. 2016;2016. PubMed PMID: 27195660. Pubmed Central PMCID: PMC5058566. Epub 2016/05/20. eng. Tsai PF, Chen PC, Chen YY, Song HY, Lin HM, Lin FM, et al. Length of Hospital Stay Prediction at the Admission Stage for Cardiology Patients Using Artificial Neural Network. J Healthc Eng. 2016;2016. PubMed PMID: 27195660. Pubmed Central PMCID: PMC5058566. Epub 2016/05/20. eng.
43.
go back to reference Triana AJ, Vyas R, Shah AS, Tiwari V. Predicting Length of Stay of Coronary Artery Bypass Grafting Patients Using Machine Learning. J Surg Res. 2021;264:68–75. PubMed PMID: 33784585. Epub 2021/03/31. eng. Triana AJ, Vyas R, Shah AS, Tiwari V. Predicting Length of Stay of Coronary Artery Bypass Grafting Patients Using Machine Learning. J Surg Res. 2021;264:68–75. PubMed PMID: 33784585. Epub 2021/03/31. eng.
44.
go back to reference Zhang P, Yin Z-Y, Jin Y-F. Bayesian neural network-based uncertainty modelling: application to soil compressibility and undrained shear strength prediction. Can Geotech J. 2022;59(4):546–57.CrossRef Zhang P, Yin Z-Y, Jin Y-F. Bayesian neural network-based uncertainty modelling: application to soil compressibility and undrained shear strength prediction. Can Geotech J. 2022;59(4):546–57.CrossRef
45.
go back to reference Kadri F, Dairi A, Harrou F, Sun Y. Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework. J Ambient Intell Humaniz Comput. 2022:1–15. PubMed PMID: 35132336. Pubmed Central PMCID: PMC8810344. Epub 2022/02/09. eng. Kadri F, Dairi A, Harrou F, Sun Y. Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework. J Ambient Intell Humaniz Comput. 2022:1–15. PubMed PMID: 35132336. Pubmed Central PMCID: PMC8810344. Epub 2022/02/09. eng.
46.
go back to reference Fernandes MPB, Armengol de la Hoz M, Rangasamy V, Subramaniam B. Machine Learning Models with Preoperative Risk Factors and Intraoperative Hypotension Parameters Predict Mortality After Cardiac Surgery. J Cardiothorac Vasc Anesth. 2021;35(3):857–65. PubMed PMID: 32747203. Epub 2020/08/05. eng. Fernandes MPB, Armengol de la Hoz M, Rangasamy V, Subramaniam B. Machine Learning Models with Preoperative Risk Factors and Intraoperative Hypotension Parameters Predict Mortality After Cardiac Surgery. J Cardiothorac Vasc Anesth. 2021;35(3):857–65. PubMed PMID: 32747203. Epub 2020/08/05. eng.
Metadata
Title
A non-linear time series based artificial intelligence model to predict outcome in cardiac surgery
Authors
Sushant Konar
Nitin Auluck
Rajarajan Ganesan
Atul Kumar Goyal
Tarunpreet Kaur
Mansi Sahi
Tanvir Samra
Shyam Kumar Singh Thingnam
Goverdhan Dutt Puri
Publication date
14-11-2022
Publisher
Springer Berlin Heidelberg
Published in
Health and Technology / Issue 6/2022
Print ISSN: 2190-7188
Electronic ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-022-00706-2

Other articles of this Issue 6/2022

Health and Technology 6/2022 Go to the issue

Premium Partner