Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2019

Open Access 01-12-2019 | Research

A note on generalized convex functions

Authors: Syed Zaheer Ullah, Muhammad Adil Khan, Yu-Ming Chu

Published in: Journal of Inequalities and Applications | Issue 1/2019

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate \((\eta _{1}, \eta _{2})\)-convex function and establish its Hermite–Hadamard type inequality.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Let \(I\subseteq \mathbb{R}\) be an interval. Then a real-valued function \(\varPsi : I\mapsto \mathbb{R}\) is said to be convex on I if the inequality
$$ \varPsi \bigl[\lambda a+(1-\lambda )b\bigr]\leq \lambda \varPsi (a)+(1-\lambda ) \varPsi (b) $$
(1.1)
holds for all \(a, b\in I\) and \(\lambda \in (0, 1)\). Ψ is said to be concave if inequality (1.1) is reversed.
It is well known that the convexity theory has wide applications in special functions [130], differential equations [3161] and bivariate means [6267]. Recently, the extensions, generalizations, refinements and variants for the convexity have attracted the attention of many researchers. For example, Schur convexity [6870], GA-convexity [71], GG-convexity [72], s-convexity [73, 74], preinvexity [75], strong convexity [7679] and others [8085].
Dragomir [86] defined the coordinate convex as follows.
Definition 1.1
(See [86])
Let \(I_{1}, I_{2}\subseteq \mathbb{R}\) be two interval, \(\varPsi : I_{1}\times I_{2}\mapsto \mathbb{R}\) be a real-valued function, and the partial mappings \(\varPsi _{y}: I_{1}\mapsto \mathbb{R}\) and \(\varPsi _{x}: I_{2}\mapsto \mathbb{R}\) be defined by
$$ \varPsi _{y}(u)=\varPsi (u, y), \qquad \varPsi _{x}(v)=\varPsi (x, v), $$
respectively. Then Ψ is said to be coordinate convex on \(I_{1}\times I_{2}\) if \(\varPsi _{y}\) is convex on \(I_{1}\) for all \(y\in I_{2}\) and \(\varPsi _{x}\) is convex on \(I_{2}\) for all \(x\in I_{1}\).
Remark 1.2
Dragomir [86] proved that every convex function is coordinate convex, but not vice versa.
Next, we recall the concept of η-convexity which can be found in the literature [87].
Definition 1.3
(See [87])
Let \(I\subseteq \mathbb{R}\) be an interval, and \(\varPsi : I\mapsto \mathbb{R}\) and \(\eta : \mathbb{R} \times \mathbb{R}\mapsto \mathbb{R}\) be two real-valued functions. Then Ψ is said to be η-convex if the inequality
$$ \varPsi \bigl[\mu x+(1-\mu )y\bigr]\leq \varPsi (y)+\mu \eta \bigl[\varPsi (x), \varPsi (y) \bigr] $$
holds for all \(x, y\in I\) and \(\mu \in [0, 1]\).
Note that the η-convexity reduces to the usual convexity if \(\eta (x, y)=x-y\) in Definition 1.3.
The main purpose of the article is to give a non-trivial example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex but not vice versa, define the coordinate \((\eta _{1}, \eta _{2})\)-convex function and establish its Hermite–Hadamard type inequality.

2 Main results

To begin this section, it is interesting to give the definition of η-convex function defined on rectangle, and give a non-trivial example for a η-convex function defined on rectangle is not convex.
Definition 2.1
Let \(I_{1}, I_{2}\subseteq \mathbb{R}\) be two intervals, and \(\varPsi : I_{1}\times I_{2}\mapsto \mathbb{R}\) and \(\eta : \mathbb{R}\times \mathbb{R}\mapsto \mathbb{R}\) be two real-valued functions. Then Ψ is said to be η-convex if the inequality
$$ \varPsi \bigl[\mu x+(1-\mu )z, \mu y+(1-\mu )w\bigr]\leq \varPsi (z, w)+\mu \eta \bigl[ \varPsi (x,y), \varPsi (z, w)\bigr] $$
holds for all \((x, y), (z, w)\in I_{1}\times I_{2}\) and \(\mu \in [0, 1]\).
Example 2.2
Let \(\varPsi : [1,5]\times [1,5]\mapsto \mathbb{R}\) and \(\eta : \mathbb{R}\times \mathbb{R}\mapsto \mathbb{R}\) be defined by
$$ \varPsi (x, y)=x^{2}y^{2}, \qquad \eta (x, y)=104x+103y. $$
Then Ψ is η-convex on \([1,5]\times [1,5]\), but it is not convex.
Proof
Let \(\mu \in [0, 1]\). Then for any \((x, y), (z, w)\in [1,5]\) we have
$$\begin{aligned}& \varPsi \bigl[\mu x+(1-\mu )z,\mu y+(1-\mu )w\bigr] \\& \quad =\bigl[\mu x+(1-\mu )z\bigr]^{2}\bigl[\mu y+(1-\mu )w \bigr]^{2} \\& \quad =\bigl[z^{2}+\mu \bigl(\mu x^{2}+\mu z^{2}-2z^{2}\bigr)+2\mu (1-\mu )xz\bigr] \\& \qquad {}\times \bigl[w^{2}+\mu \bigl(\mu y^{2}+\mu w^{2}-2w^{2}\bigr)+2\mu (1-\mu )yw\bigr] \\& \quad \leq \bigl[z^{2}+\mu x^{2}+2\mu (1-\mu )xz\bigr] \bigl[w^{2}+\mu y^{2}+2\mu (1-\mu )yw\bigr] \\& \quad \leq \bigl[z^{2}+\mu x^{2}+\mu (1-\mu ) \bigl(x^{2}+z^{2}\bigr)\bigr] \bigl[w^{2}+\mu y^{2}+ \mu (1-\mu ) \bigl(y^{2}+w^{2}\bigr) \bigr] \\& \quad \leq \bigl[z^{2}+\mu \bigl(x^{2}+x^{2}+z^{2} \bigr)\bigr] \bigl[w^{2}+\mu \bigl(y^{2}+y^{2}+w^{2} \bigr)\bigr] \\& \quad =z^{2}w^{2}+\mu \bigl[2y^{2}z^{2}+z^{2}w^{2}+2x^{2}w^{2}+w^{2}z^{2} \bigr]+\mu ^{2}\bigl[4x^{2}y^{2}+2x^{2}w^{2}+2y^{2}z^{2}+z^{2}w^{2} \bigr] \\& \quad \leq \varPsi (z,w)+\mu \bigl[2y^{2}z^{2}+z^{2}w^{2}+2x^{2}w^{2}+w^{2}z^{2} \bigr]+ \mu \bigl[4x^{2}y^{2}+2x^{2}w^{2}+2y^{2}z^{2}+z^{2}w^{2} \bigr] \\& \quad =\varPsi (z,w)+\mu \bigl[4x^{2}y^{2}+3z^{2}w^{2}+4 \bigl(z^{2}y^{2}+x^{2}w^{2}\bigr) \bigr]. \end{aligned}$$
(2.1)
Note that
$$ z^{2}\leq 25x^{2}, \qquad x^{2}\leq 25z^{2}. $$
(2.2)
It follows from (2.1) and (2.2) that
$$\begin{aligned}& \varPsi \bigl[\mu x+(1-\mu )z,\mu y+(1-\mu )w\bigr] \\& \quad \leq \varPsi (z,w)+\mu \bigl[104x^{2}y^{2}+103z^{2}w^{2} \bigr] \\& \quad =\varPsi (z,w)+\mu \eta \bigl[\varPsi (x,y),\varPsi (z,w)\bigr], \end{aligned}$$
which shows that Ψ is η-convex on \([1,5]\times [1,5]\). It is easily to verify that Ψ is not convex on \([1,5]\times [1,5]\), for details see [79]. □
Next, we introduce the definition of coordinate \((\eta _{1}, \eta _{2})\)-convexity.
Definition 2.3
Let \(I_{1}, I_{2}\subseteq \mathbb{R}\) be two intervals, \(\varPsi : I_{1}\times I_{2}\mapsto \mathbb{R}\), \(\eta _{1}, \eta _{2}: \mathbb{R}\times \mathbb{R}\mapsto \mathbb{R}\) be three real-valued functions, and the partial mappings \(\varPsi _{y}: I_{1} \mapsto \mathbb{R}\) and \(\varPsi _{x}: I_{2}\mapsto \mathbb{R}\) be defined by
$$ \varPsi _{y}(u)=\varPsi (u, y), \qquad \varPsi _{x}(v)=\varPsi (x, v). $$
Then Ψ is said to be coordinate \((\eta _{1}, \eta _{2})\)-convex on \(I_{1}\times I_{2}\) if \(\varPsi _{y}\) is \(\eta _{1}\)-convex on \(I_{1}\) and \(\varPsi _{x}\) is \(\eta _{2}\)-convex on \(I_{2}\). In particular, if \(\eta _{1}=\eta _{2}=\eta \), then Ψ is said to be coordinate η-convex.
Example 2.4
Let \(\varPsi : [0, \infty )\times [0, \infty ) \mapsto \mathbb{R}\) be defined by \(\varPsi (x, y)=-|x|-y^{2}\), \(\eta _{1}(x, y)=-x-y\) and \(\eta _{2}(x, y)=-x-2y\). Then Ψ is coordinate \((\eta _{1}, \eta _{2})\)-convex on \([0, \infty )\times [0, \infty )\).
Proof
Let \(x_{1}, y_{1}\in [0, \infty )\) and \(\mu \in [0, 1]\). Then for any \((x, y)\in [0, \infty )\) we clearly see that
$$\begin{aligned}& \varPsi _{y}\bigl(\mu x_{1}+(1-\mu )x_{2}\bigr)=- \bigl\vert \mu x_{1}+(1-\mu )x_{2} \bigr\vert -y^{2}, \end{aligned}$$
(2.3)
$$\begin{aligned}& \varPsi _{y}(x_{2})+\mu \eta _{1}\bigl(\varPsi _{y}(x_{1}), \varPsi _{y}(x_{2}) \bigr) \\& \quad =- \vert x_{2} \vert -y^{2}+\mu \eta _{1}\bigl(- \vert x_{1} \vert -y^{2}, - \vert x_{2} \vert -y^{2}\bigr) \\& \quad =- \vert x_{2} \vert -y^{2}+\mu \bigl( \vert x_{1} \vert + \vert x_{2} \vert +2y^{2} \bigr), \end{aligned}$$
(2.4)
$$\begin{aligned}& \varPsi _{x}\bigl(\mu y_{1}+(1-\mu )y_{2} \bigr)=- \vert x \vert -\bigl(\mu y_{1}+(1-\mu )y_{2} \bigr)^{2}, \end{aligned}$$
(2.5)
$$\begin{aligned}& \varPsi _{x}(y_{2})+\mu \eta _{2}\bigl(\varPsi _{x}(y_{1}), \varPsi _{x}(y_{2}) \bigr) \\& \quad =- \vert x \vert -y_{2}^{2}+\mu \eta _{2}\bigl(- \vert x \vert -y_{1}^{2}, - \vert x \vert -y_{2}^{2}\bigr) \\& \quad=- \vert x \vert -y_{2}^{2}+\mu \bigl(y_{1}^{2}+2y_{2}^{2}+3 \vert x \vert \bigr). \end{aligned}$$
(2.6)
It follows from (2.3)–(2.6) that
$$\begin{aligned}& \varPsi _{y}(x_{2})+\mu \eta _{1}\bigl(\varPsi _{y}(x_{1}), \varPsi _{y}(x_{2}) \bigr)-\varPsi _{y}\bigl(\mu x_{1}+(1-\mu )x_{2} \bigr) \\& \quad =\mu \bigl( \vert x_{1} \vert + \vert x_{2} \vert +2y^{2}\bigr)+ \bigl\vert \mu x_{1}+(1-\mu )x_{2} \bigr\vert - \vert x_{2} \vert \\& \quad \geq 2\mu y^{2}+\mu \vert x_{1} \vert +\mu \vert x_{2} \vert +(1-\mu ) \vert x_{2} \vert -\mu \vert x_{1} \vert - \vert x _{2} \vert \\& \quad =2\mu y^{2}\geq 0, \end{aligned}$$
(2.7)
$$\begin{aligned}& \varPsi _{x}(y_{2})+\mu \eta _{2}\bigl(\varPsi _{x}(y_{1}), \varPsi _{x}(y_{2}) \bigr)-\varPsi _{x}\bigl(\mu y_{1}+(1-\mu )y_{2} \bigr) \\& \quad =3\mu \vert x \vert +2\mu (1-\mu )y_{1}y_{2}+ \mu (1+\mu )y_{1}^{2}+\mu ^{2}y_{2} ^{2}\geq 0. \end{aligned}$$
(2.8)
Therefore, Ψ is coordinate \((\eta _{1}, \eta _{2})\)-convex on \([0, \infty )\times [0, \infty )\) follows from (2.7) and (2.8). □
Theorem 2.5
Let \(I_{1}, I_{2}\subseteq \mathbb{R}\)be two interval and \(\eta : \mathbb{R}\times \mathbb{R}\mapsto \mathbb{R}\)be a real-valued function. ThenΨis coordinateη-convex on \(I_{1}\times I_{2}\)ifΨisη-convex on \(I_{1}\times I _{2}\).
Proof
Let \((x,y)\in I_{1}\times I_{2}\), \(u, v\in I_{2}\) and \(z, w\in I_{1}\). Then it follows from the η-convexity of the function Ψ on \(I_{1}\times I_{2}\) that
$$\begin{aligned} \varPsi _{x}\bigl(\mu v+(1-\mu )u\bigr) =&\varPsi \bigl(x, \mu v+(1-\mu )u\bigr) \\ =&\varPsi \bigl(\mu x+(1-\mu )x, \mu v+(1-\mu )u\bigr) \\ \leq& \varPsi (x, u)+\mu \eta \bigl(\varPsi (x, v), \varPsi (x, u)\bigr) \\ =&\varPsi _{x}(u)+\mu \eta \bigl(\varPsi _{x}(v), \varPsi _{x}(u)\bigr) \end{aligned}$$
(2.9)
and
$$\begin{aligned} \varPsi _{y}\bigl(\mu z+(1-\mu )w\bigr) =&\varPsi \bigl(\mu z+(1-\mu )w, y \bigr) \\ =&\varPsi \bigl(\mu z+(1-\mu )w, \mu y+(1-\mu )y\bigr) \\ \leq &\varPsi (w, y)+\mu \eta \bigl(\varPsi (z, y), \varPsi (w, y)\bigr) \\ =&\varPsi _{y}(w)+\mu \eta \bigl(\varPsi _{y}(z), \varPsi _{y}(w)\bigr). \end{aligned}$$
(2.10)
Inequalities (2.9) and (2.10) imply that \(\varPsi _{x}\) is η-convex on \(I_{2}\) and \(\varPsi _{y}\) is η-convex on \(I_{1}\). Therefore, Ψ is coordinate η-convex on \(I_{1}\times I_{2}\). □
Example 2.6
Let \(I_{1}=I_{2}=[0, \infty )\), \(\varPsi , \eta : I_{1}\times I_{2}\mapsto [0, \infty )\) be defined by
$$ \varPsi (x, y)=xy, \qquad \eta (x, y)=x+y. $$
(2.11)
Then Ψ is coordinate η-convex on \(I_{1}\times I_{2}\) but it is not η-convex on \(I_{1}\times I_{2}\).
Proof
Let \(x, y, u, v, z, w\in [0, \infty )\) and \(\mu \in [0, 1]\). Then it follows from (2.11) that
$$\begin{aligned}& \varPsi _{x}\bigl(\mu u+(1-\mu )v\bigr)=\varPsi \bigl(x, \mu u+(1-\mu )v \bigr) \\& \hphantom{\varPsi _{x}\bigl(\mu u+(1-\mu )v\bigr)} =x\bigl(\mu u+(1-\mu )v\bigr)=-\mu xv+x(\mu u+v), \end{aligned}$$
(2.12)
$$\begin{aligned}& \varPsi (x, v)+\mu \eta \bigl(\varPsi (x, u), \varPsi (x, v)\bigr)=xv+\mu \eta (xu, xv) \\& \hphantom{\varPsi (x, v)+\mu \eta \bigl(\varPsi (x, u), \varPsi (x, v)\bigr)} =xv+\mu (xu+xv)=\mu xv+x(\mu u+v), \end{aligned}$$
(2.13)
$$\begin{aligned}& \varPsi _{y}\bigl(\mu z+(1-\mu )w\bigr)=\varPsi \bigl(\mu z+(1-\mu )w, y \bigr) \\& \hphantom{\varPsi _{y}\bigl(\mu z+(1-\mu )w\bigr)} =y\bigl(\mu z+(1-\mu )w\bigr)=-\mu yw+y(\mu z+w), \end{aligned}$$
(2.14)
$$\begin{aligned}& \varPsi (w, y)+\mu \eta \bigl(\varPsi (z, y), \varPsi (w, y)\bigr)=wy+\mu \eta (zy, wy) \\& \hphantom{\varPsi (w, y)+\mu \eta \bigl(\varPsi (z, y), \varPsi (w, y)\bigr)} =wy+\mu (zy+wy)=\mu yw+y(\mu z+w). \end{aligned}$$
(2.15)
Inequalities (2.12)–(2.15) imply that
$$ \varPsi _{x}\bigl(\mu u+(1-\mu )v\bigr)\leq \varPsi (x, v)+\mu \eta \bigl(\varPsi (x, u), \varPsi (x, v)\bigr) $$
(2.16)
and
$$ \varPsi _{y}\bigl(\mu z+(1-\mu )w\bigr)\leq \varPsi (w, y)+\mu \eta \bigl(\varPsi (z, y), \varPsi (w, y)\bigr). $$
(2.17)
Note that
$$ \varPsi _{x}\bigl(\mu u+(1-\mu )v\bigr)=\varPsi \bigl(\mu x+(1-\mu )x, \mu u+(1-\mu )v\bigr) $$
(2.18)
and
$$ \varPsi _{y}\bigl(\mu z+(1-\mu )w\bigr)=\varPsi \bigl(\mu z+(1-\mu )w, \mu y+(1-\mu )y\bigr). $$
(2.19)
Therefore, Ψ is coordinate η-convex on \(I_{1}\times I_{2}\) follows from (2.16)–(2.19).
Next, we prove that Ψ is not η-convex on \(I_{1}\times I _{2}\).
Let \(\mu \in (0, 1)\), \(x=w=1\) and \(y=z=0\). Then (2.11) leads to
$$\begin{aligned}& \varPsi \bigl(\mu x+(1-\mu )z, \mu y+(1-\mu )w\bigr) \\& \quad =\varPsi (\mu , 1-\mu )=\mu (1-\mu )>0, \end{aligned}$$
(2.20)
$$\begin{aligned}& \varPsi (z, w)+\mu \eta \bigl(\varPsi (x, y), \varPsi (z, w)\bigr) \\& \quad =\varPsi (0, 1)+\mu \eta \bigl(\varPsi (1, 0), \varPsi (0, 1)\bigr)=0. \end{aligned}$$
(2.21)
From (2.20) and (2.21) we clearly see that Ψ is not η-convex on \(I_{1}\times I_{2}\). □
Next, we establish a Hermite–Hadamard type inequality for the coordinate \((\eta _{1}, \eta _{2})\)-convex function.
Theorem 2.7
Let \(a, b, c, d\in \mathbb{R}\)with \(a< b\)and \(c< d\), \(\varPsi : [a, b]\times [c, d]\mapsto \mathbb{R}\), \(\eta _{1}, \eta _{2}: \mathbb{R}\times \mathbb{R}\mapsto \mathbb{R}\)be three real-valued functions such thatΨis coordinate \((\eta _{1}, \eta _{2})\)-convex on \([a, b]\times [c, d]\)and
$$ \eta _{1}(x, y)\leq M_{\eta _{1}}, \qquad \eta _{2}(x, y)\leq M_{\eta _{2}} $$
for all \(x, y\in \mathbb{R}\), where \(M_{\eta _{1}}\)and \(M_{\eta _{2}}\)are two positive constants. Then
$$\begin{aligned}& \begin{gathered}[b] \varPsi \biggl(\frac{a+b}{2}, \frac{c+d}{2} \biggr)- \frac{M_{\eta _{1}}+M _{\eta _{2}}}{2} \\ \quad \leq \frac{1}{2} \biggl[\frac{1}{b-a} \int _{a}^{b}\varPsi \biggl(x, \frac{c+d}{2} \biggr)\,dx +\frac{1}{d-c} \int _{c}^{d}\varPsi \biggl(\frac{a+b}{2}, y \biggr)\,dy \biggr]-\frac{M _{\eta _{1}}+M_{\eta _{2}}}{4} \\ \quad \leq \frac{1}{(b-a)(d-c)} \int _{c}^{d} \int _{a}^{b}\varPsi (x, y)\,dx\,dy \\ \quad \leq \frac{1}{4} \biggl[\frac{1}{b-a} \int _{a}^{b} \bigl(\varPsi (x, c)+ \varPsi (x, d) \bigr)\,dx+ \frac{1}{d-c} \int _{c}^{d} \bigl(\varPsi (a, y)+ \varPsi (b, y) \bigr)\,dy \biggr]\\ \qquad {}+\frac{M_{\eta _{1}}+M_{\eta _{2}}}{4} \\ \quad \leq \frac{1}{4} \bigl[\varPsi (a, c)+\varPsi (b, c)+\varPsi (a, d)+\varPsi (b, d) \bigr]+ \frac{5}{4} [M_{\eta _{1}}+M_{\eta _{2}} ]. \end{gathered} \end{aligned}$$
(2.22)
Proof
For any fixed \(x\in [a, b]\), \(\varPsi _{x}(y)=\varPsi (x, y)\) is \(\eta _{2}\)-convex on \([c, d]\) due to Ψ is coordinate \((\eta _{1}, \eta _{2})\)-convex on \([a, b]\times [c, d]\). It follows from [77, Theorem 5] that
$$ \varPsi \biggl(x, \frac{c+d}{2} \biggr)- \frac{M_{\eta _{2}}}{2}\leq \frac{1}{d-c} \int _{c}^{d}\varPsi (x, y)\,dy \leq \frac{\varPsi (x, c)+\varPsi (x, d)}{2}+\frac{M_{\eta _{2}}}{2}. $$
(2.23)
Integrating each side of inequality (2.23) with respect to the variable x on \([a, b]\) leads to
$$\begin{aligned}& \frac{1}{b-a} \int _{a}^{b}\varPsi \biggl(x, \frac{c+d}{2} \biggr)\,dx-\frac{M _{\eta _{2}}}{2} \\& \quad \leq \frac{1}{(b-a)(d-c)} \int _{c}^{d} \int _{a}^{b}\varPsi (x, y)\,dx\,dy \\& \quad \leq \frac{1}{2(b-a)} \int _{a}^{b} \bigl[\varPsi (x, c)+\varPsi (x, d) \bigr]\,dx+\frac{M _{\eta _{2}}}{2}. \end{aligned}$$
(2.24)
By similar arguments we have
$$\begin{aligned}& \frac{1}{d-c} \int _{c}^{d}\varPsi \biggl(\frac{a+b}{2}, y \biggr)\,dy-\frac{M _{\eta _{1}}}{2} \\& \quad \leq \frac{1}{(b-a)(d-c)} \int _{c}^{d} \int _{a}^{b}\varPsi (x, y)\,dx\,dy \\& \quad \leq \frac{1}{2(d-c)} \int _{c}^{d} \bigl[\varPsi (a, y)+\varPsi (b, y) \bigr]\,dy+\frac{M _{\eta _{1}}}{2}. \end{aligned}$$
(2.25)
Adding (2.24) and (2.25) we get the second and third inequalities of (2.22).
Making use of the \((\eta _{1}, \eta _{2})\)-convexity of the function Ψ on \([a, b]\times [c, d]\) and [88, Theorem 5] again we get
$$\begin{aligned}& \varPsi \biggl(\frac{a+b}{2}, \frac{c+d}{2} \biggr)- \frac{M_{\eta _{2}}}{2}\leq \frac{1}{b-a} \int _{a}^{b}\varPsi \biggl(x, \frac{c+d}{2} \biggr)\,dx, \end{aligned}$$
(2.26)
$$\begin{aligned}& \varPsi \biggl(\frac{a+b}{2}, \frac{c+d}{2} \biggr)- \frac{M_{\eta _{1}}}{2}\leq \frac{1}{d-c} \int _{c}^{d}\varPsi \biggl(\frac{a+b}{2}, y \biggr)\,dy, \end{aligned}$$
(2.27)
$$\begin{aligned}& \frac{1}{b-a} \int _{a}^{b}\varPsi (x, c)\,dx\leq \frac{\varPsi (a, c)+\varPsi (b, c)}{2}+\frac{M_{\eta _{2}}}{2}, \end{aligned}$$
(2.28)
$$\begin{aligned}& \frac{1}{b-a} \int _{a}^{b}\varPsi (x, d)\,dx\leq \frac{\varPsi (a, d)+\varPsi (b, d)}{2}+\frac{M_{\eta _{2}}}{2}, \end{aligned}$$
(2.29)
$$\begin{aligned}& \frac{1}{d-c} \int _{c}^{d}\varPsi (a, y)\,dy\leq \frac{\varPsi (a, c)+\varPsi (a, d)}{2}+\frac{M_{\eta _{1}}}{2}, \end{aligned}$$
(2.30)
$$\begin{aligned}& \frac{1}{d-c} \int _{c}^{d}\varPsi (b, y)\,dy\leq \frac{\varPsi (b, c)+\varPsi (b, d)}{2}+\frac{M_{\eta _{1}}}{2}. \end{aligned}$$
(2.31)
Therefore, the first inequality of (2.22) follows from (2.26) and (2.27) with adding \(-\frac{1}{2}M_{\eta _{2}}\) and \(-\frac{1}{2}M_{\eta _{1}}\) respectively, and the last inequality in (2.22) can be derived from (2.28)–(2.31) immediately, with adding \(\frac{1}{4} [M_{\eta _{1}}+M_{\eta _{2}} ]\). □

3 Results and discussion

In the article, we establish a non-trivial example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general. Furthermore, we define a new class of function which is coordinate \((\eta _{1}, \eta _{2})\)-convex function and prove its well-known Hermite–Hadamard type inequality.

4 Conclusion

We find an example for η-convex function defined on rectangle is not convex. The authors define a coordinate \((\eta _{1}, \eta _{2})\)-convex function and prove its results. Our approach may have further applications in the theory of η-convexity.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Guessab, A., Schmeisser, G.: Sharp integral inequalities of the Hermite–Hadamard type. J. Approx. Theory 115(2), 260–288 (2002) MathSciNetMATHCrossRef Guessab, A., Schmeisser, G.: Sharp integral inequalities of the Hermite–Hadamard type. J. Approx. Theory 115(2), 260–288 (2002) MathSciNetMATHCrossRef
2.
go back to reference Shi, H.-P., Zhang, H.-Q.: Existence of gap solitons in periodic discrete nonlinear Schrödinger equations. J. Math. Anal. Appl. 361(2), 411–419 (2010) MathSciNetMATHCrossRef Shi, H.-P., Zhang, H.-Q.: Existence of gap solitons in periodic discrete nonlinear Schrödinger equations. J. Math. Anal. Appl. 361(2), 411–419 (2010) MathSciNetMATHCrossRef
3.
go back to reference Zhou, W.-J., Zhang, L.: Convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems. Comput. Appl. Math. 29(2), 195–214 (2010) MathSciNetMATHCrossRef Zhou, W.-J., Zhang, L.: Convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems. Comput. Appl. Math. 29(2), 195–214 (2010) MathSciNetMATHCrossRef
4.
go back to reference Yang, X.-S., Zhu, Q.-X., Huang, C.-X.: Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations. Nonlinear Anal., Real World Appl. 12(1), 93–105 (2011) MathSciNetMATHCrossRef Yang, X.-S., Zhu, Q.-X., Huang, C.-X.: Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations. Nonlinear Anal., Real World Appl. 12(1), 93–105 (2011) MathSciNetMATHCrossRef
5.
go back to reference Zhu, Q.-X., Huang, C.-X., Yang, X.-S.: Exponential stability for stochastic jumping BAM neural networks with time-varying and distributed delays. Nonlinear Anal. Hybrid Syst. 5(1), 52–77 (2011) MathSciNetMATHCrossRef Zhu, Q.-X., Huang, C.-X., Yang, X.-S.: Exponential stability for stochastic jumping BAM neural networks with time-varying and distributed delays. Nonlinear Anal. Hybrid Syst. 5(1), 52–77 (2011) MathSciNetMATHCrossRef
6.
go back to reference Dai, Z.-F., Wen, F.-H.: A modified CG-DESCENT method for unconstrained optimization. J. Comput. Appl. Math. 235(11), 3332–3341 (2011) MathSciNetMATHCrossRef Dai, Z.-F., Wen, F.-H.: A modified CG-DESCENT method for unconstrained optimization. J. Comput. Appl. Math. 235(11), 3332–3341 (2011) MathSciNetMATHCrossRef
7.
go back to reference Gou, K., Sun, B.: Numerical solution of the Goursat problem on a triangular domain with mixed boundary conditions. Appl. Math. Comput. 217(21), 8765–8777 (2011) MathSciNetMATH Gou, K., Sun, B.: Numerical solution of the Goursat problem on a triangular domain with mixed boundary conditions. Appl. Math. Comput. 217(21), 8765–8777 (2011) MathSciNetMATH
8.
go back to reference Lin, L., Liu, Z.-Y.: An alternating projected gradient algorithm for nonnegative matrix factorization. Appl. Math. Comput. 217(24), 9997–10002 (2011) MathSciNetMATH Lin, L., Liu, Z.-Y.: An alternating projected gradient algorithm for nonnegative matrix factorization. Appl. Math. Comput. 217(24), 9997–10002 (2011) MathSciNetMATH
9.
go back to reference Zhang, L., Li, J.-L.: A new globalization technique for nonlinear conjugate gradient methods for nonconvex minimization. Appl. Math. Comput. 217(24), 10295–10304 (2011) MathSciNetMATH Zhang, L., Li, J.-L.: A new globalization technique for nonlinear conjugate gradient methods for nonconvex minimization. Appl. Math. Comput. 217(24), 10295–10304 (2011) MathSciNetMATH
10.
go back to reference Xiao, C.-E., Liu, J.-B., Liu, Y.-L.: An inverse pollution problem in porous media. Appl. Math. Comput. 218(7), 3649–3653 (2011) MathSciNetMATH Xiao, C.-E., Liu, J.-B., Liu, Y.-L.: An inverse pollution problem in porous media. Appl. Math. Comput. 218(7), 3649–3653 (2011) MathSciNetMATH
11.
go back to reference Huang, C.-X., Liu, L.-Z.: Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator. Publ. Inst. Math. 92(106), 165–176 (2012) MathSciNetMATHCrossRef Huang, C.-X., Liu, L.-Z.: Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator. Publ. Inst. Math. 92(106), 165–176 (2012) MathSciNetMATHCrossRef
12.
go back to reference Zhou, W.-J.: On the convergence of the modified Levenberg–Marquardt method with a nonmonotone second order Armijo type line search. J. Comput. Appl. Math. 239, 152–161 (2013) MathSciNetMATHCrossRef Zhou, W.-J.: On the convergence of the modified Levenberg–Marquardt method with a nonmonotone second order Armijo type line search. J. Comput. Appl. Math. 239, 152–161 (2013) MathSciNetMATHCrossRef
13.
go back to reference Zhang, L., Jian, S.-Y.: Further studies on the Wei–Yao–Liu nonlinear conjugate gradient method. Appl. Math. Comput. 219(14), 7616–7621 (2013) MathSciNetMATH Zhang, L., Jian, S.-Y.: Further studies on the Wei–Yao–Liu nonlinear conjugate gradient method. Appl. Math. Comput. 219(14), 7616–7621 (2013) MathSciNetMATH
14.
go back to reference Li, X.-F., Tang, G.-J., Tang, B.-Q.: Stress field around a strike-slip fault in orthotropic elastic layers via a hypersingular integral equation. Comput. Math. Appl. 66(11), 2317–2326 (2013) MathSciNetMATHCrossRef Li, X.-F., Tang, G.-J., Tang, B.-Q.: Stress field around a strike-slip fault in orthotropic elastic layers via a hypersingular integral equation. Comput. Math. Appl. 66(11), 2317–2326 (2013) MathSciNetMATHCrossRef
15.
go back to reference Qin, G.-X., Huang, C.-X., Xie, Y.-Q., Wen, F.-H.: Asymptotic behavior for third-order quasi-linear differential equations. Adv. Differ. Equ. 2013, Article ID 305 (2013) MathSciNetMATHCrossRef Qin, G.-X., Huang, C.-X., Xie, Y.-Q., Wen, F.-H.: Asymptotic behavior for third-order quasi-linear differential equations. Adv. Differ. Equ. 2013, Article ID 305 (2013) MathSciNetMATHCrossRef
16.
go back to reference Zhou, W.-J., Chen, X.-L.: On the convergence of a modified regularized Newton method for convex optimization with singular solutions. J. Comput. Appl. Math. 239, 179–188 (2013) MathSciNetMATHCrossRef Zhou, W.-J., Chen, X.-L.: On the convergence of a modified regularized Newton method for convex optimization with singular solutions. J. Comput. Appl. Math. 239, 179–188 (2013) MathSciNetMATHCrossRef
17.
go back to reference Wang, M.-K., Chu, Y.-M.: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119–126 (2013) MathSciNetMATHCrossRef Wang, M.-K., Chu, Y.-M.: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119–126 (2013) MathSciNetMATHCrossRef
18.
go back to reference Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014) MathSciNetMATHCrossRef Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014) MathSciNetMATHCrossRef
19.
go back to reference Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016) MathSciNetMATHCrossRef Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016) MathSciNetMATHCrossRef
20.
go back to reference Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017) MathSciNetMATHCrossRef Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017) MathSciNetMATHCrossRef
21.
go back to reference Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017) MathSciNetMATHCrossRef Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017) MathSciNetMATHCrossRef
22.
go back to reference Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018) MathSciNetCrossRef Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018) MathSciNetCrossRef
23.
go back to reference Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018, Article ID 239 (2018) MathSciNetCrossRef Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018, Article ID 239 (2018) MathSciNetCrossRef
24.
go back to reference Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018) MathSciNetMATH Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018) MathSciNetMATH
25.
go back to reference Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019) MathSciNetCrossRef Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019) MathSciNetCrossRef
26.
go back to reference Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019) MathSciNetMATHCrossRef Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019) MathSciNetMATHCrossRef
27.
go back to reference Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019) MathSciNetMATH Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019) MathSciNetMATH
28.
go back to reference Wang, M.-K., Chu, Y.-M., Zhang, W.: Precise estimates for the solution of Ramanujan’s generalized modular equation. Ramanujan J. 49(3), 653–668 (2019) MathSciNetMATHCrossRef Wang, M.-K., Chu, Y.-M., Zhang, W.: Precise estimates for the solution of Ramanujan’s generalized modular equation. Ramanujan J. 49(3), 653–668 (2019) MathSciNetMATHCrossRef
29.
go back to reference Wang, M.-K., Zhang, W., Chu, Y.-M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. 39B(5), 1440–1450 (2019) Wang, M.-K., Zhang, W., Chu, Y.-M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. 39B(5), 1440–1450 (2019)
31.
go back to reference Huang, C.-X., Yang, Z.-C., Yi, T.-S., Zou, X.-F.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014) MathSciNetMATHCrossRef Huang, C.-X., Yang, Z.-C., Yi, T.-S., Zou, X.-F.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014) MathSciNetMATHCrossRef
32.
go back to reference Tang, W.-S., Sun, Y.-J.: Construction of Runge–Kutta type methods for solving ordinary differential equations. Appl. Math. Comput. 234, 179–191 (2014) MathSciNetMATH Tang, W.-S., Sun, Y.-J.: Construction of Runge–Kutta type methods for solving ordinary differential equations. Appl. Math. Comput. 234, 179–191 (2014) MathSciNetMATH
33.
go back to reference Huang, C.-X., Guo, S., Liu, L.-Z.: Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón–Zygmund kernel. J. Math. Inequal. 8(3), 453–464 (2014) MathSciNetMATHCrossRef Huang, C.-X., Guo, S., Liu, L.-Z.: Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón–Zygmund kernel. J. Math. Inequal. 8(3), 453–464 (2014) MathSciNetMATHCrossRef
34.
go back to reference Xie, D.-X., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015) MathSciNetMATHCrossRef Xie, D.-X., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015) MathSciNetMATHCrossRef
35.
go back to reference Zhou, W.-J., Wang, F.: A PRP-based residual method for large-scale monotone nonlinear equations. Appl. Math. Comput. 261, 1–7 (2015) MathSciNetMATH Zhou, W.-J., Wang, F.: A PRP-based residual method for large-scale monotone nonlinear equations. Appl. Math. Comput. 261, 1–7 (2015) MathSciNetMATH
36.
go back to reference Dai, Z.-F., Chen, X.-H., Wen, F.-H.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015) MathSciNetMATH Dai, Z.-F., Chen, X.-H., Wen, F.-H.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015) MathSciNetMATH
37.
go back to reference Liu, Y.-C., Wu, J.: Multiple solutions of ordinary differential systems with min-max terms and applications to the fuzzy differential equations. Adv. Differ. Equ. 2015, Article ID 379 (2015) MathSciNetMATHCrossRef Liu, Y.-C., Wu, J.: Multiple solutions of ordinary differential systems with min-max terms and applications to the fuzzy differential equations. Adv. Differ. Equ. 2015, Article ID 379 (2015) MathSciNetMATHCrossRef
38.
go back to reference Fang, X.-P., Deng, Y.-J., Li, J.: Plasmon resonance and heat generation in nanostructures. Math. Methods Appl. Sci. 38(18), 4663–4672 (2015) MathSciNetMATHCrossRef Fang, X.-P., Deng, Y.-J., Li, J.: Plasmon resonance and heat generation in nanostructures. Math. Methods Appl. Sci. 38(18), 4663–4672 (2015) MathSciNetMATHCrossRef
39.
go back to reference Dai, Z.-F.: Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties. Appl. Math. Comput. 276, 297–300 (2016) MathSciNetMATH Dai, Z.-F.: Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties. Appl. Math. Comput. 276, 297–300 (2016) MathSciNetMATH
40.
go back to reference Li, J.-L., Sun, G.-Y., Zhang, R.-M.: The numerical solution of scattering by infinite rough interfaces based on the integral equation method. Comput. Math. Appl. 71(7), 1491–1502 (2016) MathSciNetCrossRef Li, J.-L., Sun, G.-Y., Zhang, R.-M.: The numerical solution of scattering by infinite rough interfaces based on the integral equation method. Comput. Math. Appl. 71(7), 1491–1502 (2016) MathSciNetCrossRef
41.
go back to reference Tan, Y.-X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Methods Appl. Sci. 39(11), 2821–2839 (2016) MathSciNetMATHCrossRef Tan, Y.-X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Methods Appl. Sci. 39(11), 2821–2839 (2016) MathSciNetMATHCrossRef
42.
go back to reference Duan, L., Huang, C.-X.: Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017) MathSciNetMATHCrossRef Duan, L., Huang, C.-X.: Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017) MathSciNetMATHCrossRef
43.
go back to reference Duan, L., Huang, L.-H., Guo, Z.-Y., Fang, X.-W.: Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays. Comput. Math. Appl. 73(2), 233–245 (2017) MathSciNetMATHCrossRef Duan, L., Huang, L.-H., Guo, Z.-Y., Fang, X.-W.: Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays. Comput. Math. Appl. 73(2), 233–245 (2017) MathSciNetMATHCrossRef
44.
go back to reference Wang, W.-S., Chen, Y.-Z.: Fast numerical valuation of options with jump under Merton’s model. J. Comput. Appl. Math. 318, 79–92 (2017) MathSciNetMATHCrossRef Wang, W.-S., Chen, Y.-Z.: Fast numerical valuation of options with jump under Merton’s model. J. Comput. Appl. Math. 318, 79–92 (2017) MathSciNetMATHCrossRef
45.
go back to reference Huang, C.-X., Liu, L.-Z.: Boundedness of multilinear singular integral operator with a non-smooth kernel and mean oscillation. Quaest. Math. 40(3), 295–312 (2017) MathSciNetMATHCrossRef Huang, C.-X., Liu, L.-Z.: Boundedness of multilinear singular integral operator with a non-smooth kernel and mean oscillation. Quaest. Math. 40(3), 295–312 (2017) MathSciNetMATHCrossRef
46.
go back to reference Hu, H.-J., Liu, L.-Z.: Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hörmander’s condition. Math. Notes 101(5–6), 830–840 (2017) MathSciNetMATHCrossRef Hu, H.-J., Liu, L.-Z.: Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hörmander’s condition. Math. Notes 101(5–6), 830–840 (2017) MathSciNetMATHCrossRef
47.
go back to reference Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Generalized Lyapunov–Razumikhin method for retarded differential inclusions: applications to discontinuous neural networks. Discrete Contin. Dyn. Syst. 22B(9), 3591–3614 (2017) MathSciNetMATHCrossRef Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Generalized Lyapunov–Razumikhin method for retarded differential inclusions: applications to discontinuous neural networks. Discrete Contin. Dyn. Syst. 22B(9), 3591–3614 (2017) MathSciNetMATHCrossRef
48.
go back to reference Wang, W.-S.: On A-stable one-leg methods for solving nonlinear Volterra functional differential equations. Appl. Math. Comput. 314, 380–390 (2017) MathSciNetMATH Wang, W.-S.: On A-stable one-leg methods for solving nonlinear Volterra functional differential equations. Appl. Math. Comput. 314, 380–390 (2017) MathSciNetMATH
49.
go back to reference Hu, H.-J., Zou, X.-F.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145(11), 4763–4771 (2017) MathSciNetMATHCrossRef Hu, H.-J., Zou, X.-F.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145(11), 4763–4771 (2017) MathSciNetMATHCrossRef
50.
go back to reference Tan, Y.-X., Huang, C.-X., Sun, B., Wang, T.: Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018) MathSciNetMATHCrossRef Tan, Y.-X., Huang, C.-X., Sun, B., Wang, T.: Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018) MathSciNetMATHCrossRef
51.
go back to reference Tang, W.-S., Zhang, J.-J.: Symplecticity-preserving continuous-stage Runge–Kutta–Nyström methods. Appl. Math. Comput. 323, 204–219 (2018) MathSciNetMATH Tang, W.-S., Zhang, J.-J.: Symplecticity-preserving continuous-stage Runge–Kutta–Nyström methods. Appl. Math. Comput. 323, 204–219 (2018) MathSciNetMATH
52.
go back to reference Duan, L., Fang, X.-W., Huang, C.-X.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018) MathSciNetMATHCrossRef Duan, L., Fang, X.-W., Huang, C.-X.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018) MathSciNetMATHCrossRef
53.
go back to reference Liu, Z.-Y., Wu, N.-C., Qin, X.-R., Zhang, Y.-L.: Trigonometric transform splitting methods for real symmetric Toeplitz systems. Comput. Math. Appl. 75(8), 2782–2794 (2018) MathSciNetMATHCrossRef Liu, Z.-Y., Wu, N.-C., Qin, X.-R., Zhang, Y.-L.: Trigonometric transform splitting methods for real symmetric Toeplitz systems. Comput. Math. Appl. 75(8), 2782–2794 (2018) MathSciNetMATHCrossRef
54.
go back to reference Huang, C.-X., Qiao, Y.-C., Huang, L.-H., Agarwal, R.P.: Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, Article ID 186 (2018) MathSciNetMATHCrossRef Huang, C.-X., Qiao, Y.-C., Huang, L.-H., Agarwal, R.P.: Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, Article ID 186 (2018) MathSciNetMATHCrossRef
55.
go back to reference Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146(11), 4667–4682 (2018) MathSciNetMATHCrossRef Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146(11), 4667–4682 (2018) MathSciNetMATHCrossRef
56.
go back to reference Wang, J.-F., Chen, X.-Y., Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019) MathSciNetMATHCrossRef Wang, J.-F., Chen, X.-Y., Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019) MathSciNetMATHCrossRef
57.
go back to reference Wang, J.-F., Huang, C.-X., Huang, L.-H.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019) MathSciNetCrossRef Wang, J.-F., Huang, C.-X., Huang, L.-H.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019) MathSciNetCrossRef
58.
go back to reference Jiang, Y.-J., Xu, X.-J.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 62(4), 783–794 (2019) MathSciNetMATHCrossRef Jiang, Y.-J., Xu, X.-J.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 62(4), 783–794 (2019) MathSciNetMATHCrossRef
60.
go back to reference Tian, Z.-L., Liu, Y., Zhang, Y., Liu, Z.-Y., Tian, M.-Y.: The general inner-outer iteration method based on regular splittings for the PageRank problem. Appl. Math. Comput. 356, 479–501 (2019) MathSciNet Tian, Z.-L., Liu, Y., Zhang, Y., Liu, Z.-Y., Tian, M.-Y.: The general inner-outer iteration method based on regular splittings for the PageRank problem. Appl. Math. Comput. 356, 479–501 (2019) MathSciNet
61.
go back to reference Wang, W.-S., Chen, Y.-Z., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019) MathSciNetMATHCrossRef Wang, W.-S., Chen, Y.-Z., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019) MathSciNetMATHCrossRef
62.
go back to reference Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetMATHCrossRef Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetMATHCrossRef
63.
go back to reference Zhao, T.-H., Zhou, B.-C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, Article ID 42 (2019) MathSciNetCrossRef Zhao, T.-H., Zhou, B.-C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, Article ID 42 (2019) MathSciNetCrossRef
64.
go back to reference Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct. Spaces 2019, Article ID 6082413 (2019) MathSciNetMATH Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct. Spaces 2019, Article ID 6082413 (2019) MathSciNetMATH
65.
go back to reference Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Improvements of bounds for the Sándor–Yang means. J. Inequal. Appl. 2019, Article ID 73 (2019) CrossRef Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Improvements of bounds for the Sándor–Yang means. J. Inequal. Appl. 2019, Article ID 73 (2019) CrossRef
66.
go back to reference He, X.-H., Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Sharp power mean bounds for two Sándor–Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2627–2638 (2019) MathSciNetMATHCrossRef He, X.-H., Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Sharp power mean bounds for two Sándor–Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2627–2638 (2019) MathSciNetMATHCrossRef
67.
go back to reference Qian, W.-M., He, Z.-Y., Zhang, H.-W., Chu, Y.-M.: Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean. J. Inequal. Appl. 2019, Article ID 168 (2019) MathSciNetCrossRef Qian, W.-M., He, Z.-Y., Zhang, H.-W., Chu, Y.-M.: Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean. J. Inequal. Appl. 2019, Article ID 168 (2019) MathSciNetCrossRef
68.
go back to reference Chu, Y.-M., Wang, G.-D., Zhang, X.-H.: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 284(5–6), 653–663 (2011) MathSciNetMATHCrossRef Chu, Y.-M., Wang, G.-D., Zhang, X.-H.: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 284(5–6), 653–663 (2011) MathSciNetMATHCrossRef
69.
go back to reference Chu, Y.-M., Xia, W.-F., Zhang, X.-H.: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 105, 412–421 (2012) MathSciNetMATHCrossRef Chu, Y.-M., Xia, W.-F., Zhang, X.-H.: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 105, 412–421 (2012) MathSciNetMATHCrossRef
70.
go back to reference Wu, S.-H., Chu, Y.-M.: Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters. J. Inequal. Appl. 2019, Article ID 57 (2019) MathSciNetCrossRef Wu, S.-H., Chu, Y.-M.: Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters. J. Inequal. Appl. 2019, Article ID 57 (2019) MathSciNetCrossRef
71.
go back to reference Zhang, X.-M., Chu, Y.-M., Zhang, X.-H.: The Hermite–Hadamard type inequality of GA-convex functions and its applications. J. Inequal. Appl. 2010, Article ID 507560 (2010) MathSciNetMATH Zhang, X.-M., Chu, Y.-M., Zhang, X.-H.: The Hermite–Hadamard type inequality of GA-convex functions and its applications. J. Inequal. Appl. 2010, Article ID 507560 (2010) MathSciNetMATH
72.
go back to reference Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019) MathSciNetMATH Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019) MathSciNetMATH
73.
go back to reference Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15(1), 1414–1430 (2017) MathSciNetMATH Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15(1), 1414–1430 (2017) MathSciNetMATH
74.
go back to reference Adil Khan, M., Hanif, M., Khan, Z.A., Ahmad, K., Chu, Y.-M.: Association of Jensen’s inequality for s-convex function with Csiszár divergence. J. Inequal. Appl. 2019, Article ID 162 (2019) CrossRef Adil Khan, M., Hanif, M., Khan, Z.A., Ahmad, K., Chu, Y.-M.: Association of Jensen’s inequality for s-convex function with Csiszár divergence. J. Inequal. Appl. 2019, Article ID 162 (2019) CrossRef
75.
go back to reference Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019) MATH Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019) MATH
76.
go back to reference Song, Y.-Q., Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: Integral inequalities involving strongly convex functions. J. Funct. Spaces 2018, Article ID 6595921 (2018) MathSciNetMATH Song, Y.-Q., Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: Integral inequalities involving strongly convex functions. J. Funct. Spaces 2018, Article ID 6595921 (2018) MathSciNetMATH
77.
go back to reference Zaheer Ullah, S., Adil Khan, M., Chu, Y.-M.: Majorization theorems for strongly convex functions. J. Inequal. Appl. 2019, Article ID 58 (2019) MathSciNetCrossRef Zaheer Ullah, S., Adil Khan, M., Chu, Y.-M.: Majorization theorems for strongly convex functions. J. Inequal. Appl. 2019, Article ID 58 (2019) MathSciNetCrossRef
78.
go back to reference Zaheer Ullah, S., Adil Khan, M., Khan, Z.A., Chu, Y.-M.: Integral majorization type inequalities for the functions in the sense of strong convexity. J. Funct. Spaces 2019, Article ID 9487823 (2019) MathSciNetMATH Zaheer Ullah, S., Adil Khan, M., Khan, Z.A., Chu, Y.-M.: Integral majorization type inequalities for the functions in the sense of strong convexity. J. Funct. Spaces 2019, Article ID 9487823 (2019) MathSciNetMATH
79.
go back to reference Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: The concept of coordinate strongly convex functions and related inequalities. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2235–2251 (2019) MathSciNetMATHCrossRef Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: The concept of coordinate strongly convex functions and related inequalities. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2235–2251 (2019) MathSciNetMATHCrossRef
80.
go back to reference Chu, Y.-M., Adil Khan, M., Ali, T., Dragomir, S.S.: Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, Article ID 93 (2017) MathSciNetMATHCrossRef Chu, Y.-M., Adil Khan, M., Ali, T., Dragomir, S.S.: Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, Article ID 93 (2017) MathSciNetMATHCrossRef
81.
go back to reference Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018) MathSciNetCrossRef Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018) MathSciNetCrossRef
82.
go back to reference Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018) MathSciNetMATH Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018) MathSciNetMATH
83.
go back to reference Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.-M.: Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, Article ID 161 (2018) MathSciNetCrossRef Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.-M.: Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, Article ID 161 (2018) MathSciNetCrossRef
84.
go back to reference Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018) MathSciNetMATH Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018) MathSciNetMATH
85.
go back to reference Adik Khan, M., Wu, S.-H., Ullah, H., Chu, Y.-M.: Discrete majorization type inequalities for convex functions on rectangles. J. Inequal. Appl. 2019, Article ID 16 (2019) MathSciNetCrossRef Adik Khan, M., Wu, S.-H., Ullah, H., Chu, Y.-M.: Discrete majorization type inequalities for convex functions on rectangles. J. Inequal. Appl. 2019, Article ID 16 (2019) MathSciNetCrossRef
86.
go back to reference Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775–788 (2001) MathSciNetMATHCrossRef Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775–788 (2001) MathSciNetMATHCrossRef
87.
Metadata
Title
A note on generalized convex functions
Authors
Syed Zaheer Ullah
Muhammad Adil Khan
Yu-Ming Chu
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2019
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2242-0

Other articles of this Issue 1/2019

Journal of Inequalities and Applications 1/2019 Go to the issue

Premium Partner