Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2015

Open Access 01-12-2015 | Research

A note on reverses of Young type inequalities

Authors: Xingkai Hu, Jianming Xue

Published in: Journal of Inequalities and Applications | Issue 1/2015

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we obtain some improved reverses of Young type inequalities which were established by Burqan and Khandaqji (J. Math. Inequal. 9:113-120, 2015).
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

1 Introduction

Let \(M_{n} \) be the space of \(n\times n\) complex matrices. Let \(\Vert \cdot \Vert \) denote any unitarily invariant norm on \(M_{n} \). So, \(\Vert {UAV} \Vert =\Vert A \Vert \) for all \(A\in M_{n} \) and for all unitary matrices \(U,V\in M_{n} \). For \(A= [ {a_{ij} } ]\in M_{n} \), the Hilbert-Schmidt norm and the trace norm of A are defined by \(\Vert A \Vert _{2} =\sqrt{\sum_{j=1}^{n} {s_{j}^{2} ( A )} } \), \(\Vert A \Vert _{1} =\sum_{j=1}^{n} {s_{j} ( A )} \), respectively, where \(s_{i} ( A ) \) (\(i=1,\ldots,n\)) are the singular values of A with \(s_{1} ( A )\ge\cdots\ge s_{n} (A )\), which are the eigenvalues of the positive semidefinite matrix \(\vert A \vert = ( {AA^{\ast}} )^{\frac{1}{2}}\), arranged in decreasing order and repeated according to multiplicity.
The classical Young inequality says that if \(a,b\ge0\) and \(0\le v\le1\), then
$$ a^{v}b^{1-v}\le va+ ( {1-v} )b $$
(1)
with equality if and only if \(a=b\).
Kittaneh and Manasrah [1] obtained an improvement of inequality (1) which can be stated as follows:
$$ a^{v}b^{1-v}+r_{0} ( {\sqrt{a} -\sqrt{b} } )^{2}\le va+ ( {1-v} )b, $$
(2)
where \(r_{0} =\min \{ {v,1-v} \}\).
Recently, Burqan and Khandaqji [2] gave the following reverses of the scalar Young type inequalities:
$$ v^{2}a^{2}+ ( {1-v} )^{2}b^{2} \le ( {1-v} )^{2} ( {a-b} )^{2}+a^{2v} \bigl[ { ( {1-v} )b} \bigr]^{2-2v}, \quad 0\le v\le\frac{1}{2}, $$
(3)
and
$$ v^{2}a^{2}+ ( {1-v} )^{2}b^{2} \le v^{2} ( {a-b} )^{2}+ ( {va} )^{2v}b^{2-2v},\quad \frac{1}{2}\le v\le1. $$
(4)
A matrix Young inequality, proved in [3], says that if \(A,B\in M_{n} \) are positive semidefinite, then
$$s_{j} \bigl( {A^{v}B^{1-v}} \bigr)\le s_{j} \bigl( {vA+ ( {1-v} )B} \bigr) $$
for \(j=1,\ldots,n\).
Based on the reverses of the scalar Young type inequalities (3) and (4), Burqan and Khandaqji proved the following in [2] if \(A,B,X\in M_{n}\) such that A and B are positive semidefinite. If \(0\le v\le\frac{1}{2}\), then
$$\begin{aligned} &\bigl\Vert {vAX+ ( {1-v} )XB} \bigr\Vert _{2}^{2} \\ &\quad\le ( {1-v} )^{2}\Vert {AX-XB} \Vert _{2}^{2} +2v ( {1-v} ) \bigl\Vert {A^{\frac{1}{2}}XB^{\frac{1}{2}}} \bigr\Vert _{2}^{2} + ( {1-v} )^{2 ( {1-v} )} \bigl\Vert {A^{v}XB^{1-v}} \bigr\Vert _{2}^{2} . \end{aligned}$$
(5)
If \(\frac{1}{2}\le v\le1\), then
$$ \bigl\Vert {vAX+ ( {1-v} )XB} \bigr\Vert _{2}^{2} \le v^{2}\Vert {AX-XB} \Vert _{2}^{2} +2v ( {1-v} ) \bigl\Vert {A^{\frac{1}{2}}XB^{{\frac{1}{2}}}} \bigr\Vert _{2}^{2} +v^{2v} \bigl\Vert {A^{v}XB^{1-v}} \bigr\Vert _{2}^{2} . $$
(6)
At the same time, Burqan and Khandaqji proved the following in [2] if \(A,B\in M_{n}\) such that A and B are positive semidefinite. If \(0\le v\le\frac{1}{2}\), then
$$\begin{aligned} &( {1-v} )^{1-v} \bigl\Vert {A^{v}} \bigr\Vert _{2} \bigl\Vert {B^{1-v}} \bigr\Vert _{2} \\ &\quad\ge \sqrt{v^{2}\Vert A \Vert _{2}^{2} + ( {1-v} )^{2}\Vert B \Vert _{2}^{2} - ( {1-v} )^{2} \bigl( {\Vert A \Vert _{2}^{2} +\Vert B \Vert _{2}^{2} -2\Vert {AB} \Vert _{1} } \bigr)} . \end{aligned}$$
(7)
If \(\frac{1}{2}\le v\le1\), then
$$ v^{v} \bigl\Vert {A^{v}} \bigr\Vert _{2} \bigl\Vert {B^{1-v}} \bigr\Vert _{2} \ge \sqrt {v^{2}\Vert A \Vert _{2}^{2} + ( {1-v} )^{2}\Vert B \Vert _{2}^{2} -v^{2} \bigl( {\Vert A \Vert _{2}^{2} +\Vert B \Vert _{2}^{2} -2\Vert {AB} \Vert _{1} } \bigr)} . $$
(8)
For more information on matrix versions of the Young inequality (1) the reader is referred to [49].
The main purpose of this paper is to give improved reverses of Young type inequalities (3) and (4). Then we use these inequalities to establish corresponding inequalities for matrices. To achieve our goal we need the following reverses of Young type inequalities for scalars.

2 Reverses of Young type inequalities for scalars

We begin this section with the reverses of Young type inequalities for scalars.
Theorem 1
Let \(a,b\ge0\). If \(0\le v\le\frac{1}{2}\), then
$$ v^{2}a^{2}+ ( {1-v} )^{2}b^{2}+r_{0} a \bigl( {\sqrt{ ( {1-v} )b} -\sqrt{a} } \bigr)^{2}\le ( {1-v} )^{2} ( {a-b} )^{2}+a^{2v} \bigl[ { ( {1-v} )b} \bigr]^{2-2v}, $$
(9)
where \(r_{0} =\min \{ {2v,1-2v} \}\).
If \(\frac{1}{2}\le v\le1\), then
$$ v^{2}a^{2}+ ( {1-v} )^{2}b^{2}+r_{0} b ( {\sqrt{b} -\sqrt{va} } )^{2}\le v^{2} ( {a-b} )^{2}+ ( {va} )^{2v}b^{2-2v}, $$
(10)
where \(r_{0} =\min \{ {2v-1,2-2v} \}\).
Proof
If \(0\le v\le\frac{1}{2}\), then, by inequality (2), we have
$$\begin{aligned} & ( {1-v} )^{2} ( {a-b} )^{2}-v^{2}a^{2}- ( {1-v} )^{2}b^{2}-r_{0} a \bigl( {\sqrt{ ( {1-v} )b} -\sqrt{a} } \bigr)^{2}+a^{2v} \bigl[ { ( {1-v} )b} \bigr]^{2-2v} \\ &\quad=a \bigl[ { ( {1-2v} )a+2v ( {1-v} )b} \bigr]-r_{0} a \bigl( { \sqrt{ ( {1-v} )b} -\sqrt{a} } \bigr)^{2}-2 ( {1-v} )ab+a^{2v} \bigl[ { ( {1-v} )b} \bigr]^{2-2v} \\ &\quad\ge a \bigl\{ {a^{1-2v} \bigl[ { ( {1-v} )b} \bigr]^{2v}} \bigr\} -2 ( {1-v} )ab+a^{2v} \bigl[ { ( {1-v} )b} \bigr]^{2-2v} \\ &\quad=a^{2-2v} \bigl[ { ( {1-v} )b} \bigr]^{2v}+a^{2v} \bigl[ { ( {1-v} )b} \bigr]^{2-2v}-2 ( {1-v} )ab \\ &\quad= \bigl[ {a^{1-v} ( {1-v} )^{v}b^{v}-a^{v} ( {1-v} )^{1-v}b^{1-v}} \bigr]^{2}\ge0, \end{aligned}$$
and so
$$v^{2}a^{2}+ ( {1-v} )^{2}b^{2}+r_{0} a \bigl( {\sqrt{ ( {1-v} )b} -\sqrt{a} } \bigr)^{2}\le ( {1-v} )^{2} ( {a-b} )^{2}+a^{2v} \bigl[ { ( {1-v} )b} \bigr]^{2-2v}. $$
If \(\frac{1}{2}\le v\le1\), then
$$\begin{aligned} &v^{2} ( {a-b} )^{2}-v^{2}a^{2}- ( {1-v} )^{2}b^{2}-r_{0} b ( {\sqrt{b} -\sqrt{va} } )^{2}+ ( {va} )^{2v}b^{2-2v} \\ &\quad= ( {2v-1} )b^{2}+ ( {2-2v} )vab-r_{0} b ( {\sqrt{b} - \sqrt{va} } )^{2}-2vab+ ( {va} )^{2v}b^{2-2v} \\ &\quad=b \bigl[ { ( {2v-1} )b+ ( {2-2v} )va-r_{0} ( {\sqrt{b} - \sqrt{va} } )^{2}} \bigr]-2vab+ ( {va} )^{2v}b^{2-2v} \\ &\quad\ge b \bigl[ {b^{2v-1} ( {va} )^{2-2v}} \bigr]-2vab+ ( {va} )^{2v}b^{2-2v} \\ &\quad= \bigl[ {b^{v} ( {va} )^{1-v}- ( {va} )^{v}b^{1-v}} \bigr]^{2}\ge0, \end{aligned}$$
and so
$$v^{2}a^{2}+ ( {1-v} )^{2}b^{2}+r_{0} b ( {\sqrt{b} -\sqrt{va} } )^{2}\le v^{2} ( {a-b} )^{2}+ ( {va} )^{2v}b^{2-2v}. $$
This completes the proof. □
Remark 1
Obviously, (9) and (10) are improvement reverses of the scalar Young type inequalities (3) and (4).

3 Reverses of Young type inequalities for matrices

Based on the reverses of the scalar Young type inequalities (9) and (10), we obtain matrix versions of these inequalities.
Theorem 2
Let \(A,B,X\in M_{n} \) such that A and B are positive semidefinite. If \(0\le v\le\frac{1}{2}\), then
$$\begin{aligned} & \bigl\Vert {vAX+ ( {1-v} )XB} \bigr\Vert _{2}^{2} +r_{0} \bigl[ { ( {1-v} ) \bigl\Vert {A^{\frac{1}{2}}XB^{{\frac{1}{2}}}} \bigr\Vert _{2}^{2} + \Vert {AX} \Vert _{2}^{2} -2\sqrt{1-v} \bigl\Vert {A^{\frac{3}{4}}XB^{{\frac{1}{4}}}} \bigr\Vert _{2}^{2} } \bigr] \\ &\quad\le ( {1-v} )^{2}\Vert {AX-XB} \Vert _{2}^{2} +2v ( {1-v} ) \bigl\Vert {A^{\frac{1}{2}}XB^{\frac{1}{2}}} \bigr\Vert _{2}^{2} + ( {1-v} )^{2 ( {1-v} )} \bigl\Vert {A^{v}XB^{1-v}} \bigr\Vert _{2}^{2} , \end{aligned}$$
(11)
where \(r_{0} =\min \{ {2v,1-2v} \}\).
If \(\frac{1}{2}\le v\le1\), then
$$ \begin{aligned}[b] & \bigl\Vert {vAX+ ( {1-v} )XB} \bigr\Vert _{2}^{2} +r_{0} \bigl[ {v \bigl\Vert {A^{\frac{1}{2}}XB^{{\frac{1}{2}}}} \bigr\Vert _{2}^{2} + \Vert {XB} \Vert _{2}^{2} -2\sqrt{v} \bigl\Vert {A^{\frac{1}{4}}XB^{{\frac{3}{4}}}} \bigr\Vert _{2}^{2} } \bigr]\\ &\quad \le v^{2}\Vert {AX-XB} \Vert _{2}^{2} +2v ( {1-v} ) \bigl\Vert {A^{\frac{1}{2}}XB^{{\frac{1}{2}}}} \bigr\Vert _{2}^{2} +v^{2v} \bigl\Vert {A^{v}XB^{1-v}} \bigr\Vert _{2}^{2} , \end{aligned} $$
(12)
where \(r_{0} =\min \{ {2v-1,2-2v} \}\).
Proof
Since every positive semidefinite matrix is unitarily diagonalizable, it follows that there are unitary matrices \(U,V\in M_{n} \) such that \(A=UDU^{\ast}\) and \(B=VEV^{\ast}\), where
$$D=\operatorname{diag} ( {\lambda_{1} ,\ldots,\lambda_{n} } ),\qquad E=\operatorname{diag} ( {\mu_{1} ,\ldots,\mu_{n} } ),\quad \mbox{and } \lambda_{i} ,\mu _{i} \ge 0, i=1, \ldots,n. $$
Let \(Y=U^{\ast}XV= [ {y_{ij} } ]\). Then
$$\begin{aligned}& vAX+ ( {1-v} )XB=U \bigl( {vDY+ ( {1-v} )YE} \bigr)V^{\ast}=U \bigl[{ \bigl( {v\lambda_{i} + ( {1-v} )\mu_{j} } \bigr)y_{ij} } \bigr]V^{\ast}, \\& AX-XB=U \bigl[ { ( {\lambda_{i} -\mu_{j} } )y_{ij} } \bigr]V^{\ast},\qquad A^{\frac{1}{2}}XB^{\frac{1}{2}}=U \bigl[ {\lambda_{i}^{\frac{1}{2}} \mu _{j}^{\frac{1}{2}} y_{ij} } \bigr]V^{\ast}, \end{aligned}$$
and
$$A^{v}XB^{1-v}=U \bigl[ {\lambda_{i}^{v} \mu_{j}^{1-v} y_{ij} } \bigr]V^{\ast}. $$
If \(0\le v\le\frac{1}{2}\), by inequality (9), we have
$$\begin{aligned} &\bigl\Vert {vAX+ ( {1-v} )XB} \bigr\Vert _{2}^{2} \\ &\quad=\sum_{i,j=1}^{n} { \bigl( {v \lambda_{i} + ( {1-v} )\mu _{j} } \bigr)} ^{2} \vert {y_{ij} } \vert ^{2} \\ &\quad\le ( {1-v} )^{2}\sum_{i,j=1}^{n} { ( {\lambda_{i} -\mu _{j} } )^{2}} \vert {y_{ij} } \vert ^{2}+ ( {1-v} )^{2(1-v)}\sum _{i,j=1}^{n} { \bigl( {\lambda_{i}^{v} \mu _{j}^{1-v} } \bigr)^{2}} \vert {y_{ij} } \vert ^{2} \\ &\qquad{}-r_{0} \sum_{i,j=1}^{n} \lambda_{i} \bigl( {\sqrt{ ( {1-v} )\mu_{j} } -\sqrt{ \lambda_{i} } } \bigr) ^{2}\vert {y_{ij} } \vert ^{2}+2v ( {1-v} )\sum_{i,j=1}^{n} { \bigl( {\lambda _{i}^{\frac{1}{2}} \mu_{j}^{\frac{1}{2}} } \bigr)^{2}} \vert {y_{ij} } \vert ^{2} \\ &\quad= ( {1-v} )^{2}\sum_{i,j=1}^{n} { ( {\lambda_{i} -\mu _{j} } )^{2}} \vert {y_{ij} } \vert ^{2}+ ( {1-v} )^{2(1-v)}\sum _{i,j=1}^{n} { \bigl( {\lambda_{i}^{v} \mu _{j}^{1-v} } \bigr)^{2}} \vert {y_{ij} } \vert ^{2} \\ &\qquad{}+ ( {2v-r_{0} } ) ( {1-v} )\sum _{i,j=1}^{n} { \bigl( \lambda_{i}^{\frac{1}{2}} \mu_{j}^{\frac{1}{2}} \bigr)^{2}} \vert y_{ij} \vert ^{2}\\ &\qquad{}-r_{0} \sum _{i,j=1}^{n} {\lambda_{i}^{2} \vert {y_{ij} } \vert ^{2}+2r_{0} \sqrt{ ( {1-v} )} } \sum_{i,j=1}^{n} { \bigl( { \lambda_{i}^{\frac{3}{4}} \mu_{j}^{\frac{1}{4}} } \bigr)^{2}} \vert {y_{ij} } \vert ^{2} \\ &\quad= ( {1-v} )^{2}\Vert {AX-XB} \Vert _{2}^{2} + ( {1-v} )^{2 ( {1-v} )}\bigl\Vert {A^{v}XB^{1-v}} \bigr\Vert _{2}^{2} \\ &\qquad{}+ ( {2v-r_{0} } ) ( {1-v} )\bigl\Vert {A^{\frac{1}{2}}XB^{\frac{1}{2}}} \bigr\Vert _{2}^{2} -r_{0} \Vert {AX} \Vert _{2}^{2} +2r_{0} \sqrt{1-v} \bigl\Vert {A^{\frac{3}{4}}XB^{\frac{1}{4}}} \bigr\Vert _{2}^{2} , \end{aligned}$$
and so
$$\begin{aligned} & \bigl\Vert {vAX+ ( {1-v} )XB} \bigr\Vert _{2}^{2} +r_{0} \bigl[ { ( {1-v} ) \bigl\Vert {A^{\frac{1}{2}}XB^{{\frac{1}{2}}}} \bigr\Vert _{2}^{2} +\Vert {AX} \Vert _{2}^{2} -2\sqrt{1-v} \bigl\Vert {A^{\frac{3}{4}}XB^{{\frac{1}{4}}}} \bigr\Vert _{2}^{2} } \bigr] \\ &\quad\le ( {1-v} )^{2}\Vert {AX-XB} \Vert _{2}^{2} +2v ( {1-v} ) \bigl\Vert {A^{\frac{1}{2}}XB^{\frac{1}{2}}} \bigr\Vert _{2}^{2} + ( {1-v} )^{2 ( {1-v} )} \bigl\Vert {A^{v}XB^{1-v}} \bigr\Vert _{2}^{2} . \end{aligned}$$
If \(\frac{1}{2}\le v\le1\), then by inequality (10) and the same method above, we have inequality (12). This completes the proof. □
Remark 2
Obviously, (11) and (12) are improvement reverses of the matrix Young type inequalities (5) and (6).
In the end, we present two new inequalities, by means of inequalities (9) and (10). To do this, we need the following lemmas.
Lemma 1
(Cauchy-Schwarz inequality) [10]
Let \(a_{i} \ge0\), \(b_{i} \ge0\), for \(i=1,2,\ldots,n\), then
$$\sum_{i=1}^{n} {a_{i} b_{i} } \le \Biggl( {\sum_{i=1}^{n} {a_{i}^{2} } } \Biggr)^{\frac{1}{2}} \Biggl( {\sum _{i=1}^{n} {b_{i}^{2} } } \Biggr)^{\frac{1}{2}}. $$
Lemma 2
[10]
Let \(A,B\in M_{n} \), then
$$\sum_{j=1}^{n} {s_{j} ( {AB} )} \le\sum_{j=1}^{n} {s_{j} ( A )} s_{j} ( B ). $$
Theorem 3
Let \(A,B\in M_{n} \) such that A and B are positive semidefinite. If \(0\le v\le\frac{1}{2}\), then
$$\begin{aligned} &( {1-v} )^{1-v} \bigl\Vert {A^{v}} \bigr\Vert _{2} \bigl\Vert {B^{1-v}} \bigr\Vert _{2} \\ &\quad\ge\sqrt{v^{2}\Vert A \Vert _{2}^{2} + ( {1-v} )^{2}\Vert B \Vert _{2}^{2} - ( {1-v} )^{2} \bigl( {\Vert A \Vert _{2}^{2} +\Vert B \Vert _{2}^{2} -2\Vert {AB} \Vert _{1} } \bigr)+M_{1} } , \end{aligned}$$
(13)
where \(r_{0} =\min \{ {2v,1-2v} \}\), \(M_{1} =r_{0} [ { ( {1-v} )\Vert {AB} \Vert _{1} +\Vert A \Vert _{2}^{2} -2\sqrt{1-v} \Vert {A^{\frac{3}{2}}} \Vert _{1} \Vert {B^{\frac{1}{2}}} \Vert _{1} } ]\).
If \(\frac{1}{2}\le v\le1\), then
$$ v^{v} \bigl\Vert {A^{v}} \bigr\Vert _{2} \bigl\Vert {B^{1-v}} \bigr\Vert _{2} \ge \sqrt {v^{2}\Vert A \Vert _{2}^{2} + ( {1-v} )^{2}\Vert B \Vert _{2}^{2} -v^{2} \bigl( {\Vert A \Vert _{2}^{2} +\Vert B \Vert _{2}^{2} -2\Vert {AB} \Vert _{1} } \bigr)+M_{2} } , $$
(14)
where \(r_{0} =\min \{ {2v-1,2-2v} \}\), \(M_{2} =r_{0} [ {v\Vert {AB} \Vert _{1} +\Vert B \Vert _{2}^{2} -2\sqrt{v} \Vert {A^{\frac{1}{2}}} \Vert _{1} \Vert {B^{\frac{3}{2}}} \Vert _{1} } ]\).
Proof
If \(0\le v\le\frac{1}{2}\), then using Lemma 1, Lemma 2, and inequality (9), we have
$$\begin{aligned} &\operatorname{tr} \bigl( {v^{2}A^{2}+ ( {1-v} )^{2}B^{2}} \bigr) \\ &\quad=v^{2}\operatorname{tr} A^{2}+ ( {1-v} )^{2} \operatorname{tr}B^{2} \\ &\quad=\sum_{j=1}^{n} { \bigl( {v^{2}s_{j}^{2} ( A )+ ( {1-v} )^{2}s_{j}^{2} ( B )} \bigr)} \\ &\quad\le ( {1-v} )^{2} \Biggl[ {\sum_{j=1}^{n} {s_{j}^{2} ( A )+\sum_{j=1}^{n} {s_{j}^{2} ( B )-2\sum_{j=1}^{n} {s_{j} ( A )s_{j} ( B )} } } } \Biggr] \\ &\qquad{}+\sum_{j=1}^{n} { ( {1-v} )^{2 ( {1-v} )} \bigl[ {s_{j} \bigl( {A^{v}} \bigr)s_{j} \bigl( {B^{1-v}} \bigr)} \bigr]^{2}-r_{0} } \sum_{j=1}^{n} {s_{j} ( A ) \bigl[ {\sqrt{ ( {1-v} )s_{j} ( B )} -\sqrt{s_{j} ( A )} } \bigr]^{2}} \\ &\quad\le ( {1-v} )^{2} \Biggl[ {\Vert A \Vert _{2}^{2} +\Vert B \Vert _{2}^{2} -2 \sum_{j=1}^{n} {s_{j} ( {AB} )} } \Biggr]+ ( {1-v} )^{2 ( {1-v} )} \Biggl[ {\sum_{j=1}^{n} {s_{j} \bigl( {A^{v}} \bigr)s_{j} \bigl( {B^{1-v}} \bigr)} } \Biggr]^{2} \\ &\qquad{}-r_{0} \Biggl[ {(1-v)\sum_{j=1}^{n} {s_{j} ( A )s_{j} ( B )+\sum_{j=1}^{n} {s_{j}^{2} ( A )-2\sqrt{1-v} \Biggl( {\sum _{j=1}^{n} {s_{j}^{\frac{3}{2}} ( A )s_{j}^{\frac{1}{2}} ( B )} } \Biggr)} } } \Biggr] \\ &\quad\le ( {1-v} )^{2} \bigl[ {\Vert A \Vert _{2}^{2} +\Vert B \Vert _{2}^{2} -2\Vert {AB} \Vert _{1} } \bigr]+ ( {1-v} )^{2 ( {1-v} )} \Biggl[ {\sum _{j=1}^{n} {s_{j}^{2} \bigl( {A^{v}} \bigr)\sum_{j=1}^{n} {s_{j}^{2} \bigl( {B^{1-v}} \bigr)} } } \Biggr] \\ &\qquad{}-r_{0} \Biggl[ {(1-v)\sum_{j=1}^{n} {s_{j} ( {AB} )+\Vert A \Vert _{2}^{2} -2 \sqrt{1-v} \Biggl( {\sum_{j=1}^{n} {s_{j}^{\frac{3}{4}} ( A )s_{j}^{\frac{1}{4}} ( B )} } \Biggr)^{2}} } \Biggr] \\ &\quad\le ( {1-v} )^{2} \bigl[ {\Vert A \Vert _{2}^{2} +\Vert B \Vert _{2}^{2} -2\Vert {AB} \Vert _{1} } \bigr]+ ( {1-v} )^{2 ( {1-v} )}\bigl\Vert {A^{v}} \bigr\Vert _{2}^{2} \bigl\Vert {B^{1-v}} \bigr\Vert _{2}^{2} \\ &\qquad{}-r_{0} \Biggl[ {(1-v)\Vert {AB} \Vert _{1} + \Vert A \Vert _{2}^{2} -2\sqrt {1-v} \Biggl( {\sum _{j=1}^{n} {s_{j}^{\frac{3}{2}} ( A )} \sum_{j=1}^{n} {s_{j}^{\frac{1}{2}} ( B )} } \Biggr)}\Biggr]. \end{aligned}$$
Thus
$$\begin{aligned} v^{2}\Vert A \Vert _{2}^{2} + ( {1-v} )^{2}\Vert B \Vert _{2}^{2} \le{}& ( {1-v} )^{2} \bigl( {\Vert A \Vert _{2}^{2} +\Vert B \Vert _{2}^{2} -2\Vert {AB} \Vert _{1} } \bigr)+ ( {1-v} )^{2 ( {1-v} )} \bigl\Vert {A^{v}} \bigr\Vert _{2}^{2} \bigl\Vert {B^{1-v}} \bigr\Vert _{2}^{2} \\ &{}-r_{0} \bigl[ { ( {1-v} )\Vert {AB} \Vert _{1} + \Vert A \Vert _{2}^{2} -2\sqrt{1-v} \bigl\Vert {A^{\frac{3}{2}}} \bigr\Vert _{1} \bigl\Vert {B^{\frac{1}{2}}} \bigr\Vert _{1} } \bigr]. \end{aligned}$$
If \(\frac{1}{2}\le v\le1\), then by inequality (10) and the same method above, we have inequality (14). This completes the proof. □
Remark 3
It should be noticed that neither (7) nor (13) is uniformly better than the other. At the same time, neither (8) nor (14) is uniformly better than the other.

Acknowledgements

The authors wish to express their heartfelt thanks to the referees for their detailed and helpful suggestions for revising the manuscript.
Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Literature
2.
go back to reference Burqan, A, Khandaqji, M: Reverses of Young type inequalities. J. Math. Inequal. 9, 113-120 (2015) Burqan, A, Khandaqji, M: Reverses of Young type inequalities. J. Math. Inequal. 9, 113-120 (2015)
3.
go back to reference Ando, T: Matrix Young inequalities. Oper. Theory, Adv. Appl. 75, 33-38 (1995) Ando, T: Matrix Young inequalities. Oper. Theory, Adv. Appl. 75, 33-38 (1995)
4.
go back to reference Bhatia, R, Kittaneh, F: On singular values of a product of operators. SIAM J. Matrix Anal. Appl. 11, 271-277 (1990) CrossRefMathSciNet Bhatia, R, Kittaneh, F: On singular values of a product of operators. SIAM J. Matrix Anal. Appl. 11, 271-277 (1990) CrossRefMathSciNet
5.
go back to reference Hu, X: Young type inequalities for matrices. J. East China Norm. Univ. Natur. Sci. Ed. 4, 12-17 (2012) Hu, X: Young type inequalities for matrices. J. East China Norm. Univ. Natur. Sci. Ed. 4, 12-17 (2012)
6.
go back to reference Zhan, X: Inequalities for unitarily invariant norms. SIAM J. Matrix Anal. Appl. 20, 466-470 (1998) CrossRefMATH Zhan, X: Inequalities for unitarily invariant norms. SIAM J. Matrix Anal. Appl. 20, 466-470 (1998) CrossRefMATH
7.
go back to reference Peng, Y: Young type inequalities for matrices. Ital. J. Pure Appl. Math. 32, 515-518 (2014) Peng, Y: Young type inequalities for matrices. Ital. J. Pure Appl. Math. 32, 515-518 (2014)
8.
9.
go back to reference He, C, Zou, L: Some inequalities involving unitarily invariant norms. Math. Inequal. Appl. 15, 767-776 (2012) MATHMathSciNet He, C, Zou, L: Some inequalities involving unitarily invariant norms. Math. Inequal. Appl. 15, 767-776 (2012) MATHMathSciNet
Metadata
Title
A note on reverses of Young type inequalities
Authors
Xingkai Hu
Jianming Xue
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2015
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0622-7

Other articles of this Issue 1/2015

Journal of Inequalities and Applications 1/2015 Go to the issue

Premium Partner