Skip to main content
Top
Published in: Wireless Personal Communications 4/2021

23-02-2021

A Novel Cross-Layer Cross-Domain Routing Model and It’s Optimization for Cluster-Based Dense WSN

Authors: Shivaji R. Lahane, Krupa N. Jariwala

Published in: Wireless Personal Communications | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless Sensor Networks (WSNs) plays its adorable performance in the current day communication as it could sense different environmental and physical parameters by utilizing low-cost sensor devices. The network's growth due to scientific enrichment has altogether made it feasible to design a cross-layer protocol based on the energy-efficient network. This obviously concerns the prolonging of network lifetime. This research work attempts to introduce a novel Cross-Layer Design Routing model under the clustering approach. The implemented work depends on a cross-layer mechanism via diverse layers (comprising physical layer and network layer). A cluster-based routing is introduced, where the optimal cluster head is selected using a new hybrid algorithm named Alpha Wolf-assisted Whale Optimization Algorithm (AW-WOA). Thereby, the shortest path is defined and ensures the prolonging of network lifetime. The proposed hybrid algorithm is the hybridized form of the Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). Moreover, the optimal cluster head selection is purely based on certain constraints like energy consumption, delay, and distance, respectively. In the end, the performance of the implemented technique is proved over other conventional approaches with regards to the alive node and network lifetime. In the alive node analysis of supernode, on considering the 1st test case, the presented AW-WOA model at 2000 rounds accomplishes 100% alive node than other existing models, wherein GWO and ATEER attain 91.67% and 75%, the other WOA, PSO, and AWOA ATEER attain 83.33% of alive nodes respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yarinezhad, R. (2019). Reducing delay and prolonging the lifetime of wireless sensor network using efficient routing protocol based on mobile sink and virtual infrastructure. Ad Hoc Networks, 84, 42–55.CrossRef Yarinezhad, R. (2019). Reducing delay and prolonging the lifetime of wireless sensor network using efficient routing protocol based on mobile sink and virtual infrastructure. Ad Hoc Networks, 84, 42–55.CrossRef
2.
go back to reference Yang, L., Zhu, H., Wang, H., Kang, K., & Qian, H. (2019). Data censoring with network lifetime constraint in wireless sensor networks. Digital Signal Processing, 92, 73–81.CrossRef Yang, L., Zhu, H., Wang, H., Kang, K., & Qian, H. (2019). Data censoring with network lifetime constraint in wireless sensor networks. Digital Signal Processing, 92, 73–81.CrossRef
3.
go back to reference Khalily-Dermany, M., Nadjafi-Arani, M. J., & Doostali, S. (2019). Combining topology control and network coding to optimize lifetime in wireless-sensor networks. Computer Networks, 162, 106859.CrossRef Khalily-Dermany, M., Nadjafi-Arani, M. J., & Doostali, S. (2019). Combining topology control and network coding to optimize lifetime in wireless-sensor networks. Computer Networks, 162, 106859.CrossRef
4.
go back to reference Radhika, S., & Rangarajan, P. (2019). On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction. Applied Soft Computing, 83, 105610.CrossRef Radhika, S., & Rangarajan, P. (2019). On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction. Applied Soft Computing, 83, 105610.CrossRef
5.
go back to reference Yarinezhad, R., & Hashemi, S. N. (2019). Solving the load balanced clustering and routing problems in WSNs with an fpt-approximation algorithm and a grid structure. Pervasive and Mobile Computing, 58, 101033.CrossRef Yarinezhad, R., & Hashemi, S. N. (2019). Solving the load balanced clustering and routing problems in WSNs with an fpt-approximation algorithm and a grid structure. Pervasive and Mobile Computing, 58, 101033.CrossRef
6.
go back to reference He, Y., Han, G., Wang, H., Ansere, J. A., & Zhang, W. (2019). A sector-based random routing scheme for protecting the source location privacy in WSNs for the Internet of Things. Future Generation Computer Systems, 96, 438–448.CrossRef He, Y., Han, G., Wang, H., Ansere, J. A., & Zhang, W. (2019). A sector-based random routing scheme for protecting the source location privacy in WSNs for the Internet of Things. Future Generation Computer Systems, 96, 438–448.CrossRef
7.
go back to reference Maimour, M. (2020). Interference-aware multipath routing for WSNs: Overview and performance evaluation. Applied Computing and Informatics. Maimour, M. (2020). Interference-aware multipath routing for WSNs: Overview and performance evaluation. Applied Computing and Informatics.
8.
go back to reference Hong, C., Zhang, Y., Xiong, Z., Xu, A., & Ding, W. (2018). FADS: Circular/spherical sector based forwarding area division and adaptive forwarding area selection routing protocol in WSNs. Ad Hoc Networks, 70, 121–134.CrossRef Hong, C., Zhang, Y., Xiong, Z., Xu, A., & Ding, W. (2018). FADS: Circular/spherical sector based forwarding area division and adaptive forwarding area selection routing protocol in WSNs. Ad Hoc Networks, 70, 121–134.CrossRef
9.
go back to reference Brajula, W., & Praveena, S. (2018). Energy efficient genetic algorithm based clustering technique for prolonging the life time of wireless sensor network. Journal of Networking and Communication Systems, 1(1), 1–9. Brajula, W., & Praveena, S. (2018). Energy efficient genetic algorithm based clustering technique for prolonging the life time of wireless sensor network. Journal of Networking and Communication Systems, 1(1), 1–9.
10.
go back to reference Shelgaonkar, S.L. (2020). I-CSA based cluster head selection model in wireless sensor network. Journal of Networking and Communication Systems, 3(2). Shelgaonkar, S.L. (2020). I-CSA based cluster head selection model in wireless sensor network. Journal of Networking and Communication Systems, 3(2).
11.
go back to reference Gajjar, S., Sarkar, M., & Dasgupta, K. (2016). FAMACROW: fuzzy and ant colony optimization based combined mac, routing, and unequal clustering cross-layer protocol for wireless sensor networks. Applied Soft Computing, 43, 235–247.CrossRef Gajjar, S., Sarkar, M., & Dasgupta, K. (2016). FAMACROW: fuzzy and ant colony optimization based combined mac, routing, and unequal clustering cross-layer protocol for wireless sensor networks. Applied Soft Computing, 43, 235–247.CrossRef
12.
go back to reference Elhadj, H. B., Elias, J., Chaari, L., & Kamoun, L. (2016). A priority based cross layer routing protocol for healthcare applications. Ad Hoc Networks, 42, 1–18.CrossRef Elhadj, H. B., Elias, J., Chaari, L., & Kamoun, L. (2016). A priority based cross layer routing protocol for healthcare applications. Ad Hoc Networks, 42, 1–18.CrossRef
13.
go back to reference Benzerbadj, A., Kechar, B., Bounceur, A., & Pottier, B. (2018). Cross-layer greedy position-based routing for multihop wireless sensor networks in a real environment. Ad Hoc Networks, 71, 135–146.CrossRef Benzerbadj, A., Kechar, B., Bounceur, A., & Pottier, B. (2018). Cross-layer greedy position-based routing for multihop wireless sensor networks in a real environment. Ad Hoc Networks, 71, 135–146.CrossRef
14.
go back to reference Fanian, F., & Rafsanjani, M. K. (2019). Cluster-based routing protocols in wireless sensor networks: a survey based on methodology. Journal of Network and Computer Applications, 142, 111–142.CrossRef Fanian, F., & Rafsanjani, M. K. (2019). Cluster-based routing protocols in wireless sensor networks: a survey based on methodology. Journal of Network and Computer Applications, 142, 111–142.CrossRef
15.
go back to reference Du, T., Qu, S., Liu, F., & Wang, Q. (2015). An energy efficiency semi-static routing algorithm for WSNs based on HAC clustering method. Information Fusion, 21, 18–29.CrossRef Du, T., Qu, S., Liu, F., & Wang, Q. (2015). An energy efficiency semi-static routing algorithm for WSNs based on HAC clustering method. Information Fusion, 21, 18–29.CrossRef
16.
go back to reference Ke, W., Yangrui, O., Hong, J., Heli, Z., & Xi, L. (2016). Energy aware hierarchical cluster-based routing protocol for WSNs. The Journal of China Universities of Posts and Telecommunications, 23(4), 46–52.CrossRef Ke, W., Yangrui, O., Hong, J., Heli, Z., & Xi, L. (2016). Energy aware hierarchical cluster-based routing protocol for WSNs. The Journal of China Universities of Posts and Telecommunications, 23(4), 46–52.CrossRef
17.
go back to reference Elhabyan, R., Shi, W., & St-Hilaire, M. (2018). A Pareto optimization-based approach to clustering and routing in wireless sensor networks. Journal of Network and Computer Applications, 114, 57–69.CrossRef Elhabyan, R., Shi, W., & St-Hilaire, M. (2018). A Pareto optimization-based approach to clustering and routing in wireless sensor networks. Journal of Network and Computer Applications, 114, 57–69.CrossRef
18.
go back to reference Al-Sodairi, S., & Ouni, R. (2018). Reliable and energy-efficient multi-hop LEACH-based clustering protocol for wireless sensor networks. Sustainable Computing: Informatics and Systems, 20, 1–13. Al-Sodairi, S., & Ouni, R. (2018). Reliable and energy-efficient multi-hop LEACH-based clustering protocol for wireless sensor networks. Sustainable Computing: Informatics and Systems, 20, 1–13.
19.
go back to reference Arora, V. K., Sharma, V., & Sachdeva, M. (2016). A survey on LEACH and other’s routing protocols in wireless sensor network. Optik, 127(16), 6590–6600.CrossRef Arora, V. K., Sharma, V., & Sachdeva, M. (2016). A survey on LEACH and other’s routing protocols in wireless sensor network. Optik, 127(16), 6590–6600.CrossRef
20.
go back to reference Guttula, R., & Nandanavanam, V. R. (2020). Patch antenna design optimization using opposition based grey wolf optimizer and map-reduce framework. Data Technologies and Applications, 54, 1.CrossRef Guttula, R., & Nandanavanam, V. R. (2020). Patch antenna design optimization using opposition based grey wolf optimizer and map-reduce framework. Data Technologies and Applications, 54, 1.CrossRef
21.
go back to reference Guttula, R., & Nandanavanam, V. R. (2019). Mutation probability-based lion algorithm for design and optimization of microstrip patch antenna. Evolutionary Intelligence, 13(3), 331–344.CrossRef Guttula, R., & Nandanavanam, V. R. (2019). Mutation probability-based lion algorithm for design and optimization of microstrip patch antenna. Evolutionary Intelligence, 13(3), 331–344.CrossRef
22.
go back to reference Devi, K. S. G. (2019). Hybrid genetic algorithm and particle swarm optimization algorithm for optimal power flow in power system. Journal of Computational Mechanics, Power System and Control, 2(2), 31–37.CrossRef Devi, K. S. G. (2019). Hybrid genetic algorithm and particle swarm optimization algorithm for optimal power flow in power system. Journal of Computational Mechanics, Power System and Control, 2(2), 31–37.CrossRef
23.
go back to reference Basha, T. S. G., Aloysius, G., Rajakumar, B. R., Prasad, M. N. G., & Sridevi, P. V. (2012). A constructive smart antenna beam-forming technique with spatial diversity. IET Microwaves. Antennas and Propagation, 6(7), 773–780.CrossRef Basha, T. S. G., Aloysius, G., Rajakumar, B. R., Prasad, M. N. G., & Sridevi, P. V. (2012). A constructive smart antenna beam-forming technique with spatial diversity. IET Microwaves. Antennas and Propagation, 6(7), 773–780.CrossRef
24.
go back to reference Singh, R., & Verma, A. K. (2017). Energy efficient cross layer based adaptive threshold routing protocol for WSN. AEU International Journal of Electronics and Communications, 72, 166–173.CrossRef Singh, R., & Verma, A. K. (2017). Energy efficient cross layer based adaptive threshold routing protocol for WSN. AEU International Journal of Electronics and Communications, 72, 166–173.CrossRef
25.
go back to reference Xu, X., Yuan, M., Liu, X., Liu, A., Xiong, N. N., Cai, Z., & Wang, T. (2018). A Cross-Layer Optimized Opportunistic Routing Scheme for Loss-and-Delay Sensitive WSNs. Sensors (Basel), 18(5), 1422.CrossRef Xu, X., Yuan, M., Liu, X., Liu, A., Xiong, N. N., Cai, Z., & Wang, T. (2018). A Cross-Layer Optimized Opportunistic Routing Scheme for Loss-and-Delay Sensitive WSNs. Sensors (Basel), 18(5), 1422.CrossRef
26.
go back to reference Niroumand, Z., & Aghdasi, H. S. (2017). A geographic cross-layer routing adapted for disaster relief operations in wireless sensor networks. Computers and Electrical Engineering, 64, 395–406.CrossRef Niroumand, Z., & Aghdasi, H. S. (2017). A geographic cross-layer routing adapted for disaster relief operations in wireless sensor networks. Computers and Electrical Engineering, 64, 395–406.CrossRef
27.
go back to reference Semchedine, F., Oukachbi, W., Zaichi, N., & Bouallouche-Medjkoune, L. (2015). EECP: a new cross-layer protocol for routing in wireless sensor networks. Procedia Computer Science, 73, 336–341.CrossRef Semchedine, F., Oukachbi, W., Zaichi, N., & Bouallouche-Medjkoune, L. (2015). EECP: a new cross-layer protocol for routing in wireless sensor networks. Procedia Computer Science, 73, 336–341.CrossRef
28.
go back to reference Wang, H., Wang, S., Bu, R., & Zhang, E. (2017). A novel cross-layer routing protocol based on network coding for underwater sensor networks. Sensors (Basel), 17(8), 1821.CrossRef Wang, H., Wang, S., Bu, R., & Zhang, E. (2017). A novel cross-layer routing protocol based on network coding for underwater sensor networks. Sensors (Basel), 17(8), 1821.CrossRef
29.
go back to reference Espes, D., Lagrange, X., & Suárez, L. (2015). A cross-layer MAC and routing protocol based on slotted aloha for wireless sensor networks. Annals of Telecommunications, 70(3–4), 159–169.CrossRef Espes, D., Lagrange, X., & Suárez, L. (2015). A cross-layer MAC and routing protocol based on slotted aloha for wireless sensor networks. Annals of Telecommunications, 70(3–4), 159–169.CrossRef
30.
go back to reference Karyakarte, M. S., Tavildar, A. S., & Khanna, R. (2015). Connectivity-based cross-layer opportunistic forwarding for MWSNs. IETE Journal of Research, 61(5), 547–465.CrossRef Karyakarte, M. S., Tavildar, A. S., & Khanna, R. (2015). Connectivity-based cross-layer opportunistic forwarding for MWSNs. IETE Journal of Research, 61(5), 547–465.CrossRef
31.
go back to reference Khattak, H. A., Ameer, Z., Din, I. U., & Khan, M. K. (2019). Cross-layer design and optimization techniques in wireless multimedia sensor networks for smart cities. Computer Science and Information Systems, 16(1), 1–17.CrossRef Khattak, H. A., Ameer, Z., Din, I. U., & Khan, M. K. (2019). Cross-layer design and optimization techniques in wireless multimedia sensor networks for smart cities. Computer Science and Information Systems, 16(1), 1–17.CrossRef
32.
go back to reference Yong, Z., & Pei, Q. (2012). A energy-efficient clustering routing algorithm based on distance and residual energy for wireless sensor networks. Procedia Engineering, 29, 1882–1888.CrossRef Yong, Z., & Pei, Q. (2012). A energy-efficient clustering routing algorithm based on distance and residual energy for wireless sensor networks. Procedia Engineering, 29, 1882–1888.CrossRef
33.
go back to reference Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRef
34.
go back to reference Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef
35.
go back to reference Pedersen, M. E. H., & Chipperfield, A. J. (2010). Simplifying particle swarm optimization. Applied Soft Computing, 10(2), 618–628.CrossRef Pedersen, M. E. H., & Chipperfield, A. J. (2010). Simplifying particle swarm optimization. Applied Soft Computing, 10(2), 618–628.CrossRef
36.
go back to reference Reddy, M. P. K., & Babu, M. R. (2019). Implementing self adaptiveness in whale optimization for cluster head section in internet of things. Cluster Computing, 22(1), 1361–1372.CrossRef Reddy, M. P. K., & Babu, M. R. (2019). Implementing self adaptiveness in whale optimization for cluster head section in internet of things. Cluster Computing, 22(1), 1361–1372.CrossRef
Metadata
Title
A Novel Cross-Layer Cross-Domain Routing Model and It’s Optimization for Cluster-Based Dense WSN
Authors
Shivaji R. Lahane
Krupa N. Jariwala
Publication date
23-02-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08154-3

Other articles of this Issue 4/2021

Wireless Personal Communications 4/2021 Go to the issue