Skip to main content
Top
Published in: Acta Mechanica 12/2023

07-10-2023 | Original Paper

A novel plate element based on absolute nodal coordinate formulation with collocation strategy

Authors: Jia Wang, Tengfei Wang, Yulong Zhang, Hongyou Bian, Weijun Liu

Published in: Acta Mechanica | Issue 12/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a novel multi-node plate element with absolute node coordinate formulation (ANCF) is proposed. The nodes of the element are collocated to coincide with the in-plane integral quadrature points, which are used to calculate the elastic and inertia functions. The unevenly distributed nodes of the element are the zero points of the second-order derivative of Legendre polynomial and the boundary ends of the element. The tensor product of the two-direction univariate Lagrange interpolation is used to define the displacement field. To alleviate the locking problem, the gradient deficient setup and the second-order gradient of the thickness direction are used as the nodal coordinates. The standard continuum mechanic formulation is used to deduce the elastic forces. The proposed plate element based on the ANCF with collocated nodes is denoted as ANCF\(\_\)C element. The performance of the ANCF\(\_\)C element is verified by static, eigenfrequency and dynamic examples. The results show that the ANCF\(\_\)C element is more accurate and computationally efficient.
Literature
1.
go back to reference Crisfield, M.: A fast incremental/iterative solution procedure that handles ‘snap-through’. Comput. Methods Nonlinear Struct. Solid Mech. 13, 55–62 (1981)CrossRefMATH Crisfield, M.: A fast incremental/iterative solution procedure that handles ‘snap-through’. Comput. Methods Nonlinear Struct. Solid Mech. 13, 55–62 (1981)CrossRefMATH
2.
go back to reference Ebel, H., Matikainen, M.K., Hurskainen, V.V., Mikkola, A.: Analysis of high-order quadrilateral plate elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Adv. Mech. Eng. 9(6), 1–12 (2017)CrossRef Ebel, H., Matikainen, M.K., Hurskainen, V.V., Mikkola, A.: Analysis of high-order quadrilateral plate elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Adv. Mech. Eng. 9(6), 1–12 (2017)CrossRef
3.
go back to reference Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Sys.Dyn. 20(4), 359–384 (2008)MathSciNetCrossRefMATH Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Sys.Dyn. 20(4), 359–384 (2008)MathSciNetCrossRefMATH
4.
go back to reference Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013)CrossRef Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013)CrossRef
5.
go back to reference Gu, Y., Lan, P., Cui, Y., Li, K., Yu, Z.: Dynamic interaction between the transmission wire and cross-frame. Mech. Mach. Theory 155, 104068 (2021)CrossRef Gu, Y., Lan, P., Cui, Y., Li, K., Yu, Z.: Dynamic interaction between the transmission wire and cross-frame. Mech. Mach. Theory 155, 104068 (2021)CrossRef
6.
go back to reference Li, P., Liu, C., Tian, Q., Hu, H., Song, Y.: Dynamics of a deployable mesh reflector of satellite antenna: form-finding and modal analysis. J. Comput. Nonlinear Dyn. 11(4), 041017 (2016)CrossRef Li, P., Liu, C., Tian, Q., Hu, H., Song, Y.: Dynamics of a deployable mesh reflector of satellite antenna: form-finding and modal analysis. J. Comput. Nonlinear Dyn. 11(4), 041017 (2016)CrossRef
7.
go back to reference Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3d shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 92–110 (2013) Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3d shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 92–110 (2013)
8.
go back to reference Obrezkov, L.P., Mikkola, A., Matikainen, M.K.: Performance review of locking alleviation methods for continuum ANCF beam elements. Nonlinear Dyn. 109(2), 531–546 (2022)CrossRef Obrezkov, L.P., Mikkola, A., Matikainen, M.K.: Performance review of locking alleviation methods for continuum ANCF beam elements. Nonlinear Dyn. 109(2), 531–546 (2022)CrossRef
9.
go back to reference Olshevskiy, A., Dmitrochenko, O., Kim, C.W.: A plate element with second-order absolute nodal coordinate slopes: numerical computation of shape functions. In: Asme International Design Engineering Technical Conferences & Computers & Information in Engineering Conference (2014) Olshevskiy, A., Dmitrochenko, O., Kim, C.W.: A plate element with second-order absolute nodal coordinate slopes: numerical computation of shape functions. In: Asme International Design Engineering Technical Conferences & Computers & Information in Engineering Conference (2014)
10.
go back to reference Otsuka, K., Makihara, K.: Deployment simulation using absolute nodal coordinate plate element for next-generation aerospace structures. AIAA J. 56(3), 1266–1276 (2018)CrossRef Otsuka, K., Makihara, K.: Deployment simulation using absolute nodal coordinate plate element for next-generation aerospace structures. AIAA J. 56(3), 1266–1276 (2018)CrossRef
11.
go back to reference Otsuka, K., Makihara, K., Sugiyama, H.: Recent advances in the absolute nodal coordinate formulation: literature review from 2012 to 2020. J. Comput. Nonlinear Dyn. 17(8), 080803 (2022)CrossRef Otsuka, K., Makihara, K., Sugiyama, H.: Recent advances in the absolute nodal coordinate formulation: literature review from 2012 to 2020. J. Comput. Nonlinear Dyn. 17(8), 080803 (2022)CrossRef
12.
go back to reference Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech. 229(7), 2923–2946 (2018)MathSciNetCrossRefMATH Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech. 229(7), 2923–2946 (2018)MathSciNetCrossRefMATH
13.
go back to reference Richard, L.B., Douglas, F.J.: Numerical Analysis, ninth ed. Richard Stratton (2010) Richard, L.B., Douglas, F.J.: Numerical Analysis, ninth ed. Richard Stratton (2010)
14.
go back to reference Schwab, A.L., Gerstmayr, J., Meijaard, J.P.: Comparison of three-dimensional flexible thin plate elements for multibody dynamic analysis: finite element formulation and absolute nodal coordinate formulation. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Las Vegas, Nevada (2007) Schwab, A.L., Gerstmayr, J., Meijaard, J.P.: Comparison of three-dimensional flexible thin plate elements for multibody dynamic analysis: finite element formulation and absolute nodal coordinate formulation. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Las Vegas, Nevada (2007)
15.
go back to reference Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)CrossRefMATH Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)CrossRefMATH
16.
go back to reference Shabana, A.A., Desai, C.J., Grossi, E., Patel, M.: Generalization of the strain-split method and evaluation of the nonlinear ANCF finite elements. Acta Mech. 231(4), 1365–1376 (2020)MathSciNetCrossRefMATH Shabana, A.A., Desai, C.J., Grossi, E., Patel, M.: Generalization of the strain-split method and evaluation of the nonlinear ANCF finite elements. Acta Mech. 231(4), 1365–1376 (2020)MathSciNetCrossRefMATH
17.
go back to reference Shen, Z., Tian, Q., Liu, X., Hu, G.: Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation. Aerosp. Sci. Technol. 29(1), 386–393 (2013)CrossRef Shen, Z., Tian, Q., Liu, X., Hu, G.: Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation. Aerosp. Sci. Technol. 29(1), 386–393 (2013)CrossRef
18.
go back to reference Sun, D., Chen, G., Sun, R.: Model reduction of a multibody system including a very flexible beam element. J. Mech. Sci. Technol. 28(8), 2963–2969 (2014)CrossRef Sun, D., Chen, G., Sun, R.: Model reduction of a multibody system including a very flexible beam element. J. Mech. Sci. Technol. 28(8), 2963–2969 (2014)CrossRef
21.
go back to reference Valkeapää, A.I., Yamashita, H., Jayakumar, P., Sugiyama, H.: On the use of elastic middle surface approach in the large deformation analysis of moderately thick shell structures using absolute nodal coordinate formulation. Nonlinear Dyn. 80(3), 1133–1146 (2015)MathSciNetCrossRef Valkeapää, A.I., Yamashita, H., Jayakumar, P., Sugiyama, H.: On the use of elastic middle surface approach in the large deformation analysis of moderately thick shell structures using absolute nodal coordinate formulation. Nonlinear Dyn. 80(3), 1133–1146 (2015)MathSciNetCrossRef
22.
go back to reference Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for h-p-k-refinement in isogeometric analysis. Numer. Math. 118(2), 271–305 (2011)MathSciNetCrossRefMATH Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for h-p-k-refinement in isogeometric analysis. Numer. Math. 118(2), 271–305 (2011)MathSciNetCrossRefMATH
23.
go back to reference Wang, J., Wang, T., Bian, H., Liu, W.: A novel collocation beam element based on absolute nodal coordinate formulation. Acta Mech. 234, 2695–2707 (2023)MathSciNetCrossRefMATH Wang, J., Wang, T., Bian, H., Liu, W.: A novel collocation beam element based on absolute nodal coordinate formulation. Acta Mech. 234, 2695–2707 (2023)MathSciNetCrossRefMATH
24.
go back to reference Wang, T.: Two new triangular thin plate/shell elements based on the absolute nodal coordinate formulation. Nonlinear Dyn. 99, 2707–2725 (2020)CrossRefMATH Wang, T.: Two new triangular thin plate/shell elements based on the absolute nodal coordinate formulation. Nonlinear Dyn. 99, 2707–2725 (2020)CrossRefMATH
25.
go back to reference Wang, T., Mikkola, A., Matikainen, M.K.: An overview of higher-order beam elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 17(9), 091001 (2022)CrossRef Wang, T., Mikkola, A., Matikainen, M.K.: An overview of higher-order beam elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 17(9), 091001 (2022)CrossRef
26.
go back to reference Yamashita, H., Valkeapaa, A.I., Jayakumar, P., Sugiyama, H.: Continuum mechanics based bi-linear shear deformable shell element using absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 10(5), 051012 (2014)CrossRef Yamashita, H., Valkeapaa, A.I., Jayakumar, P., Sugiyama, H.: Continuum mechanics based bi-linear shear deformable shell element using absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 10(5), 051012 (2014)CrossRef
Metadata
Title
A novel plate element based on absolute nodal coordinate formulation with collocation strategy
Authors
Jia Wang
Tengfei Wang
Yulong Zhang
Hongyou Bian
Weijun Liu
Publication date
07-10-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 12/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03730-z

Other articles of this Issue 12/2023

Acta Mechanica 12/2023 Go to the issue

Premium Partners