Skip to main content
Top
Published in: Calcolo 4/2023

01-11-2023

A numerical method for analysis and simulation of diffusive viscous wave equations with variable coefficients on polygonal meshes

Authors: Naresh Kumar, Bhupen Deka

Published in: Calcolo | Issue 4/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we design and analyze weak Galerkin finite element methods to approximate diffusive viscus wave equations with variable coefficients on polygonal meshes. The proposed method has numerous assets, including supporting a higher order of convergence and general polygonal meshes. We investigated the convergence analysis using a two-step technique that discretizes first in space and then in time. A second-order Newmark scheme is employed to develop the temporal discretization and obtain the optimal order of convergence rate in \(L^{\infty }(L^2)\) and \(L^{\infty }(H^1)\) norms. In other words, we attain \({{\mathcal {O}}}(h^{k+1}+\tau ^2)\) in \(L^{\infty }(L^2)\) norm and \({{\mathcal {O}}}(h^{k}+\tau ^2)\) in \(L^{\infty }(H^1)\) norm. We performed several numerical experiments in a two-dimensional setting, illustrating our theoretical convergence findings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ahmed, A.-T., Mu, L.: A new upwind weak Galerkin finite element method for linear hyperbolic equations. J. Comput. Appl. Math. 390, 113376 (2021)MathSciNetMATH Ahmed, A.-T., Mu, L.: A new upwind weak Galerkin finite element method for linear hyperbolic equations. J. Comput. Appl. Math. 390, 113376 (2021)MathSciNetMATH
2.
go back to reference Ammari, H., Chen, D., Zou, J.: Well-posedness of an electric interface model and its finite element approximation. Math. Models Methods Appl. Sci. 26(03), 601–625 (2016)MathSciNetMATH Ammari, H., Chen, D., Zou, J.: Well-posedness of an electric interface model and its finite element approximation. Math. Models Methods Appl. Sci. 26(03), 601–625 (2016)MathSciNetMATH
3.
go back to reference Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13(4), 564–576 (1976)MathSciNetMATH Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13(4), 564–576 (1976)MathSciNetMATH
4.
go back to reference Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetMATH Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetMATH
5.
go back to reference Deka, B., Kumar, N.: A systematic study on weak Galerkin finite element method for second order parabolic problems. Numer. Methods Partial Differ. Equ. 39(3), 2444–2474 (2023) Deka, B., Kumar, N.: A systematic study on weak Galerkin finite element method for second order parabolic problems. Numer. Methods Partial Differ. Equ. 39(3), 2444–2474 (2023)
6.
go back to reference Deka, B., Kumar, N.: Error estimates in weak Galerkin finite element methods for parabolic equations under low regularity assumptions. Appl. Numer. Math. 162, 81–105 (2021)MathSciNetMATH Deka, B., Kumar, N.: Error estimates in weak Galerkin finite element methods for parabolic equations under low regularity assumptions. Appl. Numer. Math. 162, 81–105 (2021)MathSciNetMATH
7.
go back to reference Deka, B., Roy, P.: Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions. Numer. Methods Partial Differ. Equ. 36(4), 734–755 (2020)MathSciNetMATH Deka, B., Roy, P.: Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions. Numer. Methods Partial Differ. Equ. 36(4), 734–755 (2020)MathSciNetMATH
8.
go back to reference Dutta, J., Deka, B.: Optimal a priori error estimates for the finite element approximation of dual-phase-lag bio heat model in heterogeneous medium. J. Sci. Comput. 87(2), 1–32 (2021)MathSciNetMATH Dutta, J., Deka, B.: Optimal a priori error estimates for the finite element approximation of dual-phase-lag bio heat model in heterogeneous medium. J. Sci. Comput. 87(2), 1–32 (2021)MathSciNetMATH
9.
go back to reference Gao, L., Liang, D., Zhang, B.: Error estimates for mixed finite element approximations of the viscoelasticity wave equation. Math. Methods Appl. Sci. 27(17), 1997–2016 (2004)MathSciNetMATH Gao, L., Liang, D., Zhang, B.: Error estimates for mixed finite element approximations of the viscoelasticity wave equation. Math. Methods Appl. Sci. 27(17), 1997–2016 (2004)MathSciNetMATH
10.
go back to reference Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31(2), 113–126 (1968)MathSciNetMATH Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31(2), 113–126 (1968)MathSciNetMATH
11.
go back to reference Han, W., Gao, J., Zhang, Y., Xu, W.: Well-posedness of the diffusive-viscous wave equation arising in geophysics. J. Math. Anal. Appl. 486(2), 123914 (2020)MathSciNetMATH Han, W., Gao, J., Zhang, Y., Xu, W.: Well-posedness of the diffusive-viscous wave equation arising in geophysics. J. Math. Anal. Appl. 486(2), 123914 (2020)MathSciNetMATH
12.
go back to reference Han, W., Song, C., Wang, F., Gao, J.: Numerical analysis of the diffusive-viscous wave equation. Comput. Math. Appl. 102, 54–64 (2021)MathSciNetMATH Han, W., Song, C., Wang, F., Gao, J.: Numerical analysis of the diffusive-viscous wave equation. Comput. Math. Appl. 102, 54–64 (2021)MathSciNetMATH
13.
go back to reference Huang, Y., Li, J., Li, D.: Developing weak Galerkin finite element methods for the wave equation. Numer. Methods Partial Differ. Equ. 33(3), 868–884 (2017)MathSciNetMATH Huang, Y., Li, J., Li, D.: Developing weak Galerkin finite element methods for the wave equation. Numer. Methods Partial Differ. Equ. 33(3), 868–884 (2017)MathSciNetMATH
14.
go back to reference Karaa, S.: Error estimates for finite element approximations of a viscous wave equation. Numer. Funct. Anal. Optim. 32(7), 750–767 (2011)MathSciNetMATH Karaa, S.: Error estimates for finite element approximations of a viscous wave equation. Numer. Funct. Anal. Optim. 32(7), 750–767 (2011)MathSciNetMATH
15.
go back to reference Larsson, S., Thomée, V., Wahlbin, L.B.: Finite-element methods for a strongly damped wave equation. IMA J. Numer. Anal. 11(1), 115–142 (1991)MathSciNetMATH Larsson, S., Thomée, V., Wahlbin, L.B.: Finite-element methods for a strongly damped wave equation. IMA J. Numer. Anal. 11(1), 115–142 (1991)MathSciNetMATH
16.
go back to reference Li, Q.H., Wang, J.: Weak Galerkin finite element methods for parabolic equations. Numer. Methods Partial Differ. Equ. 29(6), 2004–2024 (2013)MathSciNetMATH Li, Q.H., Wang, J.: Weak Galerkin finite element methods for parabolic equations. Numer. Methods Partial Differ. Equ. 29(6), 2004–2024 (2013)MathSciNetMATH
17.
go back to reference Lim, H., Kim, S., Douglas, J., Jr.: Numerical methods for viscous and nonviscous wave equations. Appl. Numer. Math. 57(2), 194–212 (2007)MathSciNetMATH Lim, H., Kim, S., Douglas, J., Jr.: Numerical methods for viscous and nonviscous wave equations. Appl. Numer. Math. 57(2), 194–212 (2007)MathSciNetMATH
18.
go back to reference Lin, Y.P.: A mixed type boundary problem describing the propagation of disturbances in viscous media i, weak solution for quasi-linear equations. J. Math. Anal. Appl. 135, 644–653 (1988)MathSciNetMATH Lin, Y.P.: A mixed type boundary problem describing the propagation of disturbances in viscous media i, weak solution for quasi-linear equations. J. Math. Anal. Appl. 135, 644–653 (1988)MathSciNetMATH
19.
go back to reference Lin, R., Ye, X., Zhang, S., Zhu, P.: A weak Galerkin finite element method for singularly perturbed convection–diffusion–reaction problems. SIAM J. Numer. Anal. 56(3), 1482–1497 (2018)MathSciNetMATH Lin, R., Ye, X., Zhang, S., Zhu, P.: A weak Galerkin finite element method for singularly perturbed convection–diffusion–reaction problems. SIAM J. Numer. Anal. 56(3), 1482–1497 (2018)MathSciNetMATH
20.
go back to reference Ling, D., Shu, C.-W., Yan, W.: Local discontinuous Galerkin methods for diffusive-viscous wave equations. J. Comput. Appl. Math. 419, 114690 (2023)MathSciNetMATH Ling, D., Shu, C.-W., Yan, W.: Local discontinuous Galerkin methods for diffusive-viscous wave equations. J. Comput. Appl. Math. 419, 114690 (2023)MathSciNetMATH
21.
go back to reference Liu, J., Tavener, S., Wang, Z.: Penalty-free any-order weak Galerkin fems for elliptic problems on quadrilateral meshes. J. Sci. Comput. 83, 47 (2020)MathSciNetMATH Liu, J., Tavener, S., Wang, Z.: Penalty-free any-order weak Galerkin fems for elliptic problems on quadrilateral meshes. J. Sci. Comput. 83, 47 (2020)MathSciNetMATH
22.
go back to reference Mensah, V., Hidalgo, A., Ferro, R.M.: Numerical modelling of the propagation of diffusive-viscous waves in a fluid-saturated reservoir using finite volume method. Geophys. J. Int. 218(1), 33–44 (2019) Mensah, V., Hidalgo, A., Ferro, R.M.: Numerical modelling of the propagation of diffusive-viscous waves in a fluid-saturated reservoir using finite volume method. Geophys. J. Int. 218(1), 33–44 (2019)
23.
go back to reference Mu, L., Chen, Z.: A new weno weak Galerkin finite element method for time dependent hyperbolic equations. Appl. Numer. Math. 159, 106–124 (2021)MathSciNetMATH Mu, L., Chen, Z.: A new weno weak Galerkin finite element method for time dependent hyperbolic equations. Appl. Numer. Math. 159, 106–124 (2021)MathSciNetMATH
24.
go back to reference Mu, L., Ye, J.W.X.: Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Model. 12(1), 31–53 (2015)MathSciNetMATH Mu, L., Ye, J.W.X.: Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Model. 12(1), 31–53 (2015)MathSciNetMATH
25.
go back to reference Mu, L., Wang, J., Ye, X.: A least-squares-based weak Galerkin finite element method for second order elliptic equations. SIAM J. Sci. Comput. 39(4), A1531–A1557 (2017)MathSciNetMATH Mu, L., Wang, J., Ye, X.: A least-squares-based weak Galerkin finite element method for second order elliptic equations. SIAM J. Sci. Comput. 39(4), A1531–A1557 (2017)MathSciNetMATH
26.
go back to reference Nikolic, V., Wohlmuth, B.: A priori error estimates for the finite element approximation of Westervelt’s quasi-linear acoustic wave equation. SIAM J. Numer. Anal. 57(4), 1897–1918 (2019)MathSciNetMATH Nikolic, V., Wohlmuth, B.: A priori error estimates for the finite element approximation of Westervelt’s quasi-linear acoustic wave equation. SIAM J. Numer. Anal. 57(4), 1897–1918 (2019)MathSciNetMATH
27.
go back to reference Pani, A.K., Yuan, J.Y.: Mixed finite element method for a strongly damped wave equation. Numer. Methods Partial Differ. Equ. 17(2), 105–119 (2001)MathSciNetMATH Pani, A.K., Yuan, J.Y.: Mixed finite element method for a strongly damped wave equation. Numer. Methods Partial Differ. Equ. 17(2), 105–119 (2001)MathSciNetMATH
28.
go back to reference Qiu, T., Tien, C.: Short-pulse laser heating on metals. Int. J. Heat Mass Transf. 35(3), 719–726 (1992) Qiu, T., Tien, C.: Short-pulse laser heating on metals. Int. J. Heat Mass Transf. 35(3), 719–726 (1992)
29.
go back to reference Quintal, B., Schmalholz, S.M., Podladchikov, Y.Y., Carcione, J.M.: Seismic low-frequency anomalies in multiple reflections from thinly layered poroelastic reservoirs. In: SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, pp. 1690–1695 (2007) Quintal, B., Schmalholz, S.M., Podladchikov, Y.Y., Carcione, J.M.: Seismic low-frequency anomalies in multiple reflections from thinly layered poroelastic reservoirs. In: SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists, pp. 1690–1695 (2007)
30.
go back to reference Raynal, M.L.: On some nonlinear problems of diffusion. In: Sugan, R. (ed.) Volterra Equations, pp. 251–266. Springer, Berlin (1979) Raynal, M.L.: On some nonlinear problems of diffusion. In: Sugan, R. (ed.) Volterra Equations, pp. 251–266. Springer, Berlin (1979)
31.
go back to reference Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.: Polymesher: a general-purpose mesh generator for polygonal elements written in matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)MathSciNetMATH Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.: Polymesher: a general-purpose mesh generator for polygonal elements written in matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)MathSciNetMATH
32.
go back to reference Thomée, V., Wahlbin, L.: Maximum-norm estimates for finite-element methods for a strongly damped wave equation. BIT Numer. Math. 44(1), 165–179 (2004)MathSciNetMATH Thomée, V., Wahlbin, L.: Maximum-norm estimates for finite-element methods for a strongly damped wave equation. BIT Numer. Math. 44(1), 165–179 (2004)MathSciNetMATH
33.
go back to reference Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales (1995) Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales (1995)
34.
go back to reference Tzou, D., Chiu, K.: Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transf. 44(9), 1725–1734 (2001)MATH Tzou, D., Chiu, K.: Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transf. 44(9), 1725–1734 (2001)MATH
35.
go back to reference van Rensburg, N., Stapelberg, B.: Existence and uniqueness of solutions of a general linear second-order hyperbolic problem. IMA J. Appl. Math. 84(1), 1–22 (2018)MathSciNetMATH van Rensburg, N., Stapelberg, B.: Existence and uniqueness of solutions of a general linear second-order hyperbolic problem. IMA J. Appl. Math. 84(1), 1–22 (2018)MathSciNetMATH
36.
go back to reference Van Rensburg, N., Van Der Merwe, A.: Analysis of the solvability of linear vibration models. Appl. Anal. 81(5), 1143–1159 (2002)MathSciNetMATH Van Rensburg, N., Van Der Merwe, A.: Analysis of the solvability of linear vibration models. Appl. Anal. 81(5), 1143–1159 (2002)MathSciNetMATH
37.
go back to reference Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)MathSciNetMATH Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)MathSciNetMATH
38.
go back to reference Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comp. 83(289), 2101–2126 (2014)MathSciNetMATH Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comp. 83(289), 2101–2126 (2014)MathSciNetMATH
39.
go back to reference Wang, J., Wang, R., Zhai, Q., Zhang, R.: A systematic study on weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 74(3), 1369–1396 (2018)MathSciNetMATH Wang, J., Wang, R., Zhai, Q., Zhang, R.: A systematic study on weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 74(3), 1369–1396 (2018)MathSciNetMATH
40.
go back to reference Wang, X., Gao, F., Sun, Z.: Weak Galerkin finite element method for viscoelastic wave equations. J. Comput. Appl. Math. 375, 112816 (2020)MathSciNetMATH Wang, X., Gao, F., Sun, Z.: Weak Galerkin finite element method for viscoelastic wave equations. J. Comput. Appl. Math. 375, 112816 (2020)MathSciNetMATH
41.
go back to reference Zhai, Q., Zhang, R., Malluwawadu, N., Hussain, S.: The weak Galerkin method for linear hyperbolic equation. Commun. Comput. Phys 24, 152–166 (2018)MathSciNetMATH Zhai, Q., Zhang, R., Malluwawadu, N., Hussain, S.: The weak Galerkin method for linear hyperbolic equation. Commun. Comput. Phys 24, 152–166 (2018)MathSciNetMATH
42.
go back to reference Zhang, H., Zou, Y., Xu, Y., Zhai, Q., Yue, H.: Weak Galerkin finite element method for second order parabolic equations. Int. J. Numer. Anal. Model. 13(4), 525–544 (2016)MathSciNetMATH Zhang, H., Zou, Y., Xu, Y., Zhai, Q., Yue, H.: Weak Galerkin finite element method for second order parabolic equations. Int. J. Numer. Anal. Model. 13(4), 525–544 (2016)MathSciNetMATH
43.
go back to reference Zhang, M., Yan, W., Jing, F., Zhao, H.: Discontinuous Galerkin method for the diffusive-viscous wave equation. Appl. Numer. Math. 183, 118–139 (2023)MathSciNetMATH Zhang, M., Yan, W., Jing, F., Zhao, H.: Discontinuous Galerkin method for the diffusive-viscous wave equation. Appl. Numer. Math. 183, 118–139 (2023)MathSciNetMATH
44.
go back to reference Zhao, H., Gao, J., Chen, Z.: Stability and numerical dispersion analysis of finite-difference method for the diffusive-viscous wave equation. Int. J. Num. Anal. Mod 5(1–2), 66–78 (2014)MathSciNetMATH Zhao, H., Gao, J., Chen, Z.: Stability and numerical dispersion analysis of finite-difference method for the diffusive-viscous wave equation. Int. J. Num. Anal. Mod 5(1–2), 66–78 (2014)MathSciNetMATH
45.
go back to reference Zhao, H., Gao, J., Zhao, J.: Modeling the propagation of diffusive-viscous waves using flux-corrected transport-finite-difference method. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(3), 838–844 (2014) Zhao, H., Gao, J., Zhao, J.: Modeling the propagation of diffusive-viscous waves using flux-corrected transport-finite-difference method. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(3), 838–844 (2014)
46.
go back to reference Zhen-dong, L.: The mixed finite element method for the non stationary conduction–convection problems. Chin. J. Numer. Math. Appl. 20(2), 29–59 (1998) Zhen-dong, L.: The mixed finite element method for the non stationary conduction–convection problems. Chin. J. Numer. Math. Appl. 20(2), 29–59 (1998)
47.
go back to reference Zhou, S., Gao, F., Li, B., Sun, Z.: Weak Galerkin finite element method with second-order accuracy in time for parabolic problems. Appl. Math. Lett. 90, 118–123 (2019)MathSciNetMATH Zhou, S., Gao, F., Li, B., Sun, Z.: Weak Galerkin finite element method with second-order accuracy in time for parabolic problems. Appl. Math. Lett. 90, 118–123 (2019)MathSciNetMATH
Metadata
Title
A numerical method for analysis and simulation of diffusive viscous wave equations with variable coefficients on polygonal meshes
Authors
Naresh Kumar
Bhupen Deka
Publication date
01-11-2023
Publisher
Springer International Publishing
Published in
Calcolo / Issue 4/2023
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-023-00541-5

Other articles of this Issue 4/2023

Calcolo 4/2023 Go to the issue

Premium Partner