Skip to main content
Top
Published in: Calcolo 4/2017

28-07-2017

A phase-field model for liquid–gas mixtures: mathematical modelling and discontinuous Galerkin discretization

Authors: Elisabetta Repossi, Riccardo Rosso, Marco Verani

Published in: Calcolo | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To model a liquid–gas mixture, in this article we propose a phase-field approach that might also provide a description of the expansion stage of a metal foam inside a hollow mold. We conceive the mixture as a two-phase incompressible–compressible fluid governed by a Navier–Stokes–Cahn–Hilliard system of equations, and we adapt the Lowengrub–Truskinowsky model to take into account the expansion of the gaseous phase. The resulting system of equations is characterized by a velocity field that fails to be divergence-free, by a logarithmic term for the pressure that enters in the Gibbs free-energy expression and by the viscosity that degenerates in the gas phase. In the second part of the article we propose an energy-based numerical scheme that, at the discrete level, preserves the mass conservation property and the energy dissipation law of the original system. We use a discontinuous Galerkin approximation for the spatial approximation and a modified midpoint based scheme for the time approximation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)MathSciNetCrossRefMATH Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)MathSciNetCrossRefMATH
2.
go back to reference Barrett, J., Blowey, J., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)MathSciNetCrossRefMATH Barrett, J., Blowey, J., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)MathSciNetCrossRefMATH
3.
go back to reference Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)MathSciNetCrossRefMATH Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)MathSciNetCrossRefMATH
4.
go back to reference Elliott, C.M.: The Cahn-Hilliard Model for the Kinetics of Phase Separation. Birkhäuser, Basel (1989)CrossRefMATH Elliott, C.M.: The Cahn-Hilliard Model for the Kinetics of Phase Separation. Birkhäuser, Basel (1989)CrossRefMATH
5.
go back to reference Fabrizio, M., Giorgi, C., Morro, A.: A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Physica D 214, 144–156 (2006)MathSciNetCrossRefMATH Fabrizio, M., Giorgi, C., Morro, A.: A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Physica D 214, 144–156 (2006)MathSciNetCrossRefMATH
6.
go back to reference Favelukis, M.: Dynamics of foam growth: bubble growth in a limited amount of liquid. Polym. Eng. Sci. 44, 1900–1906 (2004)CrossRef Favelukis, M.: Dynamics of foam growth: bubble growth in a limited amount of liquid. Polym. Eng. Sci. 44, 1900–1906 (2004)CrossRef
7.
go back to reference Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)MathSciNetCrossRefMATH Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)MathSciNetCrossRefMATH
8.
go back to reference Giesselmann, J., Makridakis, C., Pryer, T.: Energy consistent DG methods for the Navier–Stokes–Korteweg system. Math. Comput. 83, 2071–2099 (2014)CrossRefMATH Giesselmann, J., Makridakis, C., Pryer, T.: Energy consistent DG methods for the Navier–Stokes–Korteweg system. Math. Comput. 83, 2071–2099 (2014)CrossRefMATH
9.
go back to reference Giesselmann, J., Pryer, T.: Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model. ESAIM Math. Model. Numer. Anal. 49(1), 275–301 (2015)MathSciNetCrossRefMATH Giesselmann, J., Pryer, T.: Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model. ESAIM Math. Model. Numer. Anal. 49(1), 275–301 (2015)MathSciNetCrossRefMATH
10.
go back to reference Guo, Z., Lin, P., Lowengrub, J.: A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014)MathSciNetCrossRefMATH Guo, Z., Lin, P., Lowengrub, J.: A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014)MathSciNetCrossRefMATH
11.
go back to reference Houston, P., Schwab, C., Süli, E.: Discontinuous hp-Finite element methods for advection–diffusion-reaction problems. SIAM J. Numer. Anal 39(6), 2133–2163 (2002)MathSciNetCrossRefMATH Houston, P., Schwab, C., Süli, E.: Discontinuous hp-Finite element methods for advection–diffusion-reaction problems. SIAM J. Numer. Anal 39(6), 2133–2163 (2002)MathSciNetCrossRefMATH
12.
go back to reference Klassboer, E., Khoo, B.C.: A modified Rayleigh–Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary value integral methods. Eng. Anal. Bound. Elem. 30, 59–71 (2006)CrossRefMATH Klassboer, E., Khoo, B.C.: A modified Rayleigh–Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary value integral methods. Eng. Anal. Bound. Elem. 30, 59–71 (2006)CrossRefMATH
13.
go back to reference Körner, C.: Foam formation mechanisms in particle suspensions applied to metal foam foams. Mater. Sci. Eng. A 495, 227–235 (2008)CrossRef Körner, C.: Foam formation mechanisms in particle suspensions applied to metal foam foams. Mater. Sci. Eng. A 495, 227–235 (2008)CrossRef
14.
go back to reference Körner, C., Arnold, M., Singer, R.: Metal foam stabilization by oxide network particles. Mat. Sci. Eng. A 396, 28–40 (2005)CrossRef Körner, C., Arnold, M., Singer, R.: Metal foam stabilization by oxide network particles. Mat. Sci. Eng. A 396, 28–40 (2005)CrossRef
15.
go back to reference Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, U.: Lattice Boltzmann model for free surface flow for modeling foaming. J. Stat. Phys. 121, 179–196 (2005)MathSciNetCrossRefMATH Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, U.: Lattice Boltzmann model for free surface flow for modeling foaming. J. Stat. Phys. 121, 179–196 (2005)MathSciNetCrossRefMATH
16.
go back to reference Körner, C., Thies, M., Singer, R.: Modeling of metal foaming with lattice Boltzmann automata. Adv. Eng. Mater. 4, 765–769 (2002)CrossRef Körner, C., Thies, M., Singer, R.: Modeling of metal foaming with lattice Boltzmann automata. Adv. Eng. Mater. 4, 765–769 (2002)CrossRef
17.
go back to reference Lowengrub, J., Truskinowsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)MathSciNetCrossRefMATH Lowengrub, J., Truskinowsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)MathSciNetCrossRefMATH
20.
go back to reference Naber, A., Liu, C., Feng, J.: The nucleation and growth of gas bubbles in a Newtonian fluid: an energetic variational phase field approach. Contemp. Math. 466, 95–120 (2008)MathSciNetCrossRefMATH Naber, A., Liu, C., Feng, J.: The nucleation and growth of gas bubbles in a Newtonian fluid: an energetic variational phase field approach. Contemp. Math. 466, 95–120 (2008)MathSciNetCrossRefMATH
21.
go back to reference Patel, R.: Bubble growth in a viscous newtonian fluid. Chem. Eng. Sci. 35, 2352–2356 (1980)CrossRef Patel, R.: Bubble growth in a viscous newtonian fluid. Chem. Eng. Sci. 35, 2352–2356 (1980)CrossRef
22.
go back to reference Reichl, L.E.: A Modern Course in Statistical Mechanics. University of Texas Press, Austin (1980)MATH Reichl, L.E.: A Modern Course in Statistical Mechanics. University of Texas Press, Austin (1980)MATH
23.
go back to reference Repossi, E.: On the mathematical modeling of a metal foam expansion process. Ph.D. thesis, Ph.D. Course in Mathematical Models and Methods in Engineering, XXV cycle, Dipartimento di Matematica, Politecnico di Milano. http://hdl.handle.net/10589/108605 (2015) Repossi, E.: On the mathematical modeling of a metal foam expansion process. Ph.D. thesis, Ph.D. Course in Mathematical Models and Methods in Engineering, XXV cycle, Dipartimento di Matematica, Politecnico di Milano. http://​hdl.​handle.​net/​10589/​108605 (2015)
24.
go back to reference Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)CrossRefMATH Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)CrossRefMATH
25.
go back to reference Scriven, L.E.: On the dynamics of phase growth. Chem. Eng. Sci. 10, 3907–3915 (1959)CrossRef Scriven, L.E.: On the dynamics of phase growth. Chem. Eng. Sci. 10, 3907–3915 (1959)CrossRef
26.
go back to reference Sun, Y., Beckermann, C.: Diffuse interface modeling of two-phase flows based on averaging: mass and momentum equations. Physica D 198, 281–308 (2004)MathSciNetCrossRefMATH Sun, Y., Beckermann, C.: Diffuse interface modeling of two-phase flows based on averaging: mass and momentum equations. Physica D 198, 281–308 (2004)MathSciNetCrossRefMATH
27.
go back to reference Sun, Y., Beckermann, C.: Phase-field modeling of bubble growth and flow in a Hele–Shaw cell. Int. J. Mass Transf. 53, 2969–2978 (2010)CrossRefMATH Sun, Y., Beckermann, C.: Phase-field modeling of bubble growth and flow in a Hele–Shaw cell. Int. J. Mass Transf. 53, 2969–2978 (2010)CrossRefMATH
28.
go back to reference Teshukov, V.M., Gavrilyuk, S.L.: Kinetic model for the motion of compressible bubbles in a perfect fluid. Eur. J. Mech. B Fluids 21, 469–491 (2002)MathSciNetCrossRefMATH Teshukov, V.M., Gavrilyuk, S.L.: Kinetic model for the motion of compressible bubbles in a perfect fluid. Eur. J. Mech. B Fluids 21, 469–491 (2002)MathSciNetCrossRefMATH
29.
go back to reference Thies, M.: Lattice boltzmann modeling with free surface applied to in-situ gas generated foam formation. Ph.D. thesis, University of Erlangen-Nürnberg (2005) Thies, M.: Lattice boltzmann modeling with free surface applied to in-situ gas generated foam formation. Ph.D. thesis, University of Erlangen-Nürnberg (2005)
30.
go back to reference Tierra, G., Guillén-González, F.: Numerical methods for solving the Cahn–Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. 22(2), 269–289 (2015) Tierra, G., Guillén-González, F.: Numerical methods for solving the Cahn–Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. 22(2), 269–289 (2015)
31.
go back to reference Venerus, D.C.: Diffusion-induced bubble growth in viscous liquids of finte and infinite extent. Polym. Eng. Sci. 41, 1390–1398 (2001)CrossRef Venerus, D.C.: Diffusion-induced bubble growth in viscous liquids of finte and infinite extent. Polym. Eng. Sci. 41, 1390–1398 (2001)CrossRef
32.
go back to reference Wihler, T.P.: Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75(255), 1087–1102 (2006)MathSciNetCrossRefMATH Wihler, T.P.: Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75(255), 1087–1102 (2006)MathSciNetCrossRefMATH
Metadata
Title
A phase-field model for liquid–gas mixtures: mathematical modelling and discontinuous Galerkin discretization
Authors
Elisabetta Repossi
Riccardo Rosso
Marco Verani
Publication date
28-07-2017
Publisher
Springer Milan
Published in
Calcolo / Issue 4/2017
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-017-0233-4

Other articles of this Issue 4/2017

Calcolo 4/2017 Go to the issue

Premium Partner