Skip to main content
Top
Published in: Flow, Turbulence and Combustion 2/2018

03-07-2018

A Priori Tests of RANS Models for Turbulent Channel Flows of a Dense Gas

Authors: Luca Sciacovelli, Paola Cinnella, Xavier Gloerfelt

Published in: Flow, Turbulence and Combustion | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dense gas effects, encountered in many engineering applications, lead to unconventional variations of the thermodynamic and transport properties in the supersonic flow regime, which in turn are responsible for considerable modifications of turbulent flow behavior with respect to perfect gases. The most striking differences for wall-bounded turbulence are the decoupling of dynamic and thermal effects for gases with high specific heats, the liquid-like behavior of the viscosity and thermal conductivity, which tend to decrease away from the wall, and the increase of density fluctuations in the near wall region. The present work represents a first attempt of quantifying the influence of such dense gas effects on modeling assumptions employed for the closure of the Reynolds-averaged Navier–Stokes equations, with focus on the eddy viscosity and turbulent Prandtl number models. For that purpose, we use recent direct numerical simulation results for supersonic turbulent channel flows of PP11 (a heavy fluorocarbon representative of dense gases) at various bulk Mach and Reynolds numbers to carry out a priori tests of the validity of some currently-used models for the turbulent stresses and heat flux. More specifically, we examine the behavior of the modeled eddy viscosity for some low-Reynolds variants of the \(k-\varepsilon \) model and compare the results with those found for a perfect gas at similar conditions. We also investigate the behavior of the turbulent Prandtl number in dense gas flow and compare the results with the predictions of two well-established turbulent Prandtl number models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kirillov, N.: Analysis of modern natural gas liquefaction technologies. Chem. Pet. Eng. 40(7-8), 401–406 (2004)CrossRef Kirillov, N.: Analysis of modern natural gas liquefaction technologies. Chem. Pet. Eng. 40(7-8), 401–406 (2004)CrossRef
2.
go back to reference Zamfirescu, C., Dincer, I.: Performance investigation of high-temperature heat pumps with various BZT working fluids. Thermochim. Acta 488, 66–77 (2009)CrossRef Zamfirescu, C., Dincer, I.: Performance investigation of high-temperature heat pumps with various BZT working fluids. Thermochim. Acta 488, 66–77 (2009)CrossRef
3.
go back to reference Brown, B., Argrow, B.: Application of Bethe-Zel’dovich-Thompson fluids in organic Rankine cycle engines. J. Propuls. Power 16(6), 1118–1124 (2000)CrossRef Brown, B., Argrow, B.: Application of Bethe-Zel’dovich-Thompson fluids in organic Rankine cycle engines. J. Propuls. Power 16(6), 1118–1124 (2000)CrossRef
4.
go back to reference Congedo, P., Corre, C., Cinnella, P.: Numerical investigation of dense-gas effects in turbomachinery. Comput. Fluids 49(1), 290–301 (2011)MathSciNetCrossRef Congedo, P., Corre, C., Cinnella, P.: Numerical investigation of dense-gas effects in turbomachinery. Comput. Fluids 49(1), 290–301 (2011)MathSciNetCrossRef
5.
go back to reference Thompson, P.: A fundamental derivative in gasdynamics. Phys. Fluids 14(9), 1843–1849 (1971)CrossRef Thompson, P.: A fundamental derivative in gasdynamics. Phys. Fluids 14(9), 1843–1849 (1971)CrossRef
6.
7.
go back to reference Sciacovelli, L., Cinnella, P., Content, C., Grasso, F.: Dense gas effects in inviscid homogeneous isotropic turbulence. J. Fluid Mech. 800(1), 140–179 (2016)MathSciNetCrossRef Sciacovelli, L., Cinnella, P., Content, C., Grasso, F.: Dense gas effects in inviscid homogeneous isotropic turbulence. J. Fluid Mech. 800(1), 140–179 (2016)MathSciNetCrossRef
8.
go back to reference Sciacovelli, L., Cinnella, P., Grasso, F.: Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence. J. Fluid Mech. 825, 515–549 (2017)MathSciNetCrossRef Sciacovelli, L., Cinnella, P., Grasso, F.: Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence. J. Fluid Mech. 825, 515–549 (2017)MathSciNetCrossRef
9.
go back to reference Sciacovelli, L., Cinnella, P., Gloerfelt, X.: Direct numerical simulations of supersonic turbulent channel flows of dense gases. J. Fluid Mech. 821, 153–199 (2017)MathSciNetCrossRef Sciacovelli, L., Cinnella, P., Gloerfelt, X.: Direct numerical simulations of supersonic turbulent channel flows of dense gases. J. Fluid Mech. 821, 153–199 (2017)MathSciNetCrossRef
10.
go back to reference Huang, P., Coleman, G., Bradshaw, P.: Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185–218 (1995)CrossRef Huang, P., Coleman, G., Bradshaw, P.: Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185–218 (1995)CrossRef
11.
go back to reference Patel, V., Rodi, W., Scheuerer, G.: Turbulence models for near-wall and low reynolds number flows: A review. AIAA J. 23(9), 1308–1319 (1985)MathSciNetCrossRef Patel, V., Rodi, W., Scheuerer, G.: Turbulence models for near-wall and low reynolds number flows: A review. AIAA J. 23(9), 1308–1319 (1985)MathSciNetCrossRef
12.
go back to reference Launder, B.: Second moment closure: Methodology and practice. Tech. rep., Proceedings of the Ecole d’Eté d’Analyse Numérique–Modélisation Numérique de la Turbulence. Clamart, France (1982) Launder, B.: Second moment closure: Methodology and practice. Tech. rep., Proceedings of the Ecole d’Eté d’Analyse Numérique–Modélisation Numérique de la Turbulence. Clamart, France (1982)
13.
go back to reference Shih, T.: An improved k-epsilon model for near-wall turbulence and comparison with direct numerical simulation. Tech. rep., NASA TM 103221 (1990) Shih, T.: An improved k-epsilon model for near-wall turbulence and comparison with direct numerical simulation. Tech. rep., NASA TM 103221 (1990)
14.
go back to reference Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRef Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRef
15.
go back to reference Durbin, P.A.: Near-wall turbulence closure modeling without ”damping functions”. Theor. Comput. Fluid Dyn. 3(1), 1–13 (1991)MathSciNetMATH Durbin, P.A.: Near-wall turbulence closure modeling without ”damping functions”. Theor. Comput. Fluid Dyn. 3(1), 1–13 (1991)MathSciNetMATH
16.
go back to reference Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to \(Re_{\tau = 2003}\). Phys. Fluids 18(011), 702 (2006) Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to \(Re_{\tau = 2003}\). Phys. Fluids 18(011), 702 (2006)
17.
go back to reference Karimpour, F., Venayagamoorthy, S.: Some insights for the prediction of near-wall turbulence. J. Fluid Mech. 723, 126–139 (2013)CrossRef Karimpour, F., Venayagamoorthy, S.: Some insights for the prediction of near-wall turbulence. J. Fluid Mech. 723, 126–139 (2013)CrossRef
18.
go back to reference He, S., Kim, W., Bae, J.: Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube. Int. J. Heat Mass Transf. 51, 4659–4675 (2008)CrossRef He, S., Kim, W., Bae, J.: Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube. Int. J. Heat Mass Transf. 51, 4659–4675 (2008)CrossRef
19.
go back to reference Pecnik, R., Patel, A.: Scaling and modelling of turbulence in variable property channel flows. J. Fluid Mech. 823, R1–1–11 (2017)MathSciNetCrossRef Pecnik, R., Patel, A.: Scaling and modelling of turbulence in variable property channel flows. J. Fluid Mech. 823, R1–1–11 (2017)MathSciNetCrossRef
20.
go back to reference Irrenfried, C., Steiner, H.: DNS based analytical P-function model for RANS with heat transfer at high prandtl numbers. Int. J. Heat Mass Transf. 66, 217–225 (2017) Irrenfried, C., Steiner, H.: DNS based analytical P-function model for RANS with heat transfer at high prandtl numbers. Int. J. Heat Mass Transf. 66, 217–225 (2017)
21.
go back to reference Gerolymos, G., Vallet, I.: Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow. J. Fluid Mech. 757, 701–746 (2014)MathSciNetCrossRef Gerolymos, G., Vallet, I.: Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow. J. Fluid Mech. 757, 701–746 (2014)MathSciNetCrossRef
22.
go back to reference Martin, J., Hou, Y.: Development of an equation of state for gases. AIChE J. 1(2), 142–151 (1955)CrossRef Martin, J., Hou, Y.: Development of an equation of state for gases. AIChE J. 1(2), 142–151 (1955)CrossRef
23.
go back to reference Chung, T., Ajlan, M., Lee, L., Starling, K.: Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 27 (4), 671–679 (1988)CrossRef Chung, T., Ajlan, M., Lee, L., Starling, K.: Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 27 (4), 671–679 (1988)CrossRef
24.
go back to reference Cramer, M., Park, S.: On the suppression of shock-induced separation in bethe–zel’dovich–thompson fluids. J. Fluid Mech. 393, 1–21 (1999)MathSciNetCrossRef Cramer, M., Park, S.: On the suppression of shock-induced separation in bethe–zel’dovich–thompson fluids. J. Fluid Mech. 393, 1–21 (1999)MathSciNetCrossRef
25.
go back to reference Cramer, M., Tarkenton, G.: Transonic flows of Bethe-Zel’dovich-Thompson fluids. J. Fluid Mech. 240, 197–228 (1992)MathSciNetCrossRef Cramer, M., Tarkenton, G.: Transonic flows of Bethe-Zel’dovich-Thompson fluids. J. Fluid Mech. 240, 197–228 (1992)MathSciNetCrossRef
26.
go back to reference Poling, B., Prausnitz, J., O’Connell, J., Reid, R.: The properties of gases and liquids, vol. 5. McGraw-Hill, New York (2001) Poling, B., Prausnitz, J., O’Connell, J., Reid, R.: The properties of gases and liquids, vol. 5. McGraw-Hill, New York (2001)
27.
go back to reference Cramer, M.: Negative nonlinearity in selected fluorocarbons. Phys. Fluids A 1 (11), 1894–1897 (1989)CrossRef Cramer, M.: Negative nonlinearity in selected fluorocarbons. Phys. Fluids A 1 (11), 1894–1897 (1989)CrossRef
28.
go back to reference Gloerfelt, X., Berland, J.: Turbulent boundary-layer noise: direct radiation at mach number 0.5. J. Fluid Mech. 723, 318–351 (2013)MathSciNetCrossRef Gloerfelt, X., Berland, J.: Turbulent boundary-layer noise: direct radiation at mach number 0.5. J. Fluid Mech. 723, 318–351 (2013)MathSciNetCrossRef
29.
go back to reference Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194(1), 194–214 (2004)CrossRef Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194(1), 194–214 (2004)CrossRef
30.
go back to reference Bogey, C., De Cacqueray, N., Bailly, C.: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228(5), 1447–1465 (2009)MathSciNetCrossRef Bogey, C., De Cacqueray, N., Bailly, C.: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228(5), 1447–1465 (2009)MathSciNetCrossRef
31.
go back to reference Foysi, H., Sarkar, S., Friedrich, R.: Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207–216 (2004)CrossRef Foysi, H., Sarkar, S., Friedrich, R.: Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207–216 (2004)CrossRef
32.
go back to reference Modesti, D., Pirozzoli, S.: Reynolds and mach number effects in compressible turbulent channel flow. Int. J. Heat Fluid Flow 59, 33–49 (2016)CrossRef Modesti, D., Pirozzoli, S.: Reynolds and mach number effects in compressible turbulent channel flow. Int. J. Heat Fluid Flow 59, 33–49 (2016)CrossRef
33.
go back to reference Morinishi, Y., Tamano, S., Nakabayashi, K.: Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 502, 273–308 (2004)CrossRef Morinishi, Y., Tamano, S., Nakabayashi, K.: Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 502, 273–308 (2004)CrossRef
34.
go back to reference Zonta, F., Marchioli, C., Soldati, A.: Modulation of turbulence in forced convection by temperature-dependent viscosity. J. Fluid Mech. 697, 150–174 (2012)CrossRef Zonta, F., Marchioli, C., Soldati, A.: Modulation of turbulence in forced convection by temperature-dependent viscosity. J. Fluid Mech. 697, 150–174 (2012)CrossRef
35.
go back to reference Lee, J., Jung, S., Sung, H., Zaki, T.: Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196–225 (2013)MathSciNetCrossRef Lee, J., Jung, S., Sung, H., Zaki, T.: Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196–225 (2013)MathSciNetCrossRef
36.
go back to reference Patel, A., Peeters, J., Boersma, B., Pecnik, R.: Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids 27 (9), 095,101 (2015)CrossRef Patel, A., Peeters, J., Boersma, B., Pecnik, R.: Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids 27 (9), 095,101 (2015)CrossRef
37.
go back to reference Trettel, A., Larsson, J.: Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28(2), 026,102 (2016)CrossRef Trettel, A., Larsson, J.: Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28(2), 026,102 (2016)CrossRef
38.
go back to reference Launder, B., Sharma, B.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Trans. 1(2), 131–137 (1974)CrossRef Launder, B., Sharma, B.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Trans. 1(2), 131–137 (1974)CrossRef
39.
go back to reference Chien, K.Y.: Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 20(1), 33–38 (1982)CrossRef Chien, K.Y.: Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 20(1), 33–38 (1982)CrossRef
40.
go back to reference Lam, C., Bremhorst, K.: A modified form of the k-ε model for predicting wall turbulence. J. Fluids Eng. 103(3), 456–460 (1981)CrossRef Lam, C., Bremhorst, K.: A modified form of the k-ε model for predicting wall turbulence. J. Fluids Eng. 103(3), 456–460 (1981)CrossRef
41.
go back to reference Jones, W., Launder, B.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15(2), 301–314 (1972)CrossRef Jones, W., Launder, B.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15(2), 301–314 (1972)CrossRef
42.
go back to reference Cebeci, T.: A model for eddy conductivity and turbulent Prandtl number. J. Heat Transf. 95, 227–234 (1973)CrossRef Cebeci, T.: A model for eddy conductivity and turbulent Prandtl number. J. Heat Transf. 95, 227–234 (1973)CrossRef
43.
go back to reference Na, T., Habib, I.: Heat transfer in turbulent pipe flow based on a new mixing length model. Appl. Sci. Res. 28, 302–314 (1973)CrossRef Na, T., Habib, I.: Heat transfer in turbulent pipe flow based on a new mixing length model. Appl. Sci. Res. 28, 302–314 (1973)CrossRef
44.
go back to reference Pirozzoli, S., Bernardini, M., Orlandi, P.: Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech. 788, 614–639 (2016)MathSciNetCrossRef Pirozzoli, S., Bernardini, M., Orlandi, P.: Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech. 788, 614–639 (2016)MathSciNetCrossRef
45.
go back to reference Kays, W., Crawford, M., Weigand, B.: Convective heat and mass transfer. McGraw–Hill, New York (1980) Kays, W., Crawford, M., Weigand, B.: Convective heat and mass transfer. McGraw–Hill, New York (1980)
46.
go back to reference Kays, W.: Turbulent Prandtl number – where are we ASME J. Heat Transf. 116 (2), 284–295 (1994)CrossRef Kays, W.: Turbulent Prandtl number – where are we ASME J. Heat Transf. 116 (2), 284–295 (1994)CrossRef
Metadata
Title
A Priori Tests of RANS Models for Turbulent Channel Flows of a Dense Gas
Authors
Luca Sciacovelli
Paola Cinnella
Xavier Gloerfelt
Publication date
03-07-2018
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 2/2018
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9938-y

Other articles of this Issue 2/2018

Flow, Turbulence and Combustion 2/2018 Go to the issue

Premium Partners