Skip to main content
Top
Published in: Measurement Techniques 9/2015

01-12-2015

A Procedure for Determining the Heat Transfer Coefficients of Surfaces with Regular Relief

Authors: N. A. Kiselev, S. A. Burtsev, M. M. Strongin

Published in: Measurement Techniques | Issue 9/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A procedure for processing experimental data, which enables the fields of the distribution of the heat transfer coefficients on surfaces with regular relief to be determined for any temperature gradients and surface shapes is proposed. It is shown that, when estimating local and mean-integral characteristics of smooth surfaces a one-dimensional model of a semi-infinite body can be used, while in regions of considerable temperature gradients, particularly for curvilinear surfaces, the model gives reduced values of the heat transfer coefficient.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. M. Ligrani, “Heat transfer augmentation technologies for internal cooling of turbine components of gas turbine engines,” Int. J. Rot. Mach., 2013, 1–32 (2013), Article ID 275653, DOI: 10.1155/2013/275653. P. M. Ligrani, “Heat transfer augmentation technologies for internal cooling of turbine components of gas turbine engines,” Int. J. Rot. Mach., 2013, 1–32 (2013), Article ID 275653, DOI: 10.​1155/​2013/​275653.
2.
go back to reference A. I. Leont’ev and V. V. Olimpiev, “An analysis of the effectiveness of boundary flow swirlers (a review),” Teploenergetika, No. 1, 68 (2013). A. I. Leont’ev and V. V. Olimpiev, “An analysis of the effectiveness of boundary flow swirlers (a review),” Teploenergetika, No. 1, 68 (2013).
3.
go back to reference P. M. Ligrani, G. I. Mahmood, J. L. Harrison, et al., “Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls,” Int. J. Heat Mass Transf., 44, No. 23, 4413–4424 (2001), DOI: 10.1016/S0017-9310(01)00101-6.CrossRef P. M. Ligrani, G. I. Mahmood, J. L. Harrison, et al., “Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls,” Int. J. Heat Mass Transf., 44, No. 23, 4413–4424 (2001), DOI: 10.​1016/​S0017-9310(01)00101-6.CrossRef
4.
go back to reference A. A. Titov, A. I. Leontiev, U. A. Vinogradov, et al., “Experimental investigation of skin friction drag and heat transfer on the surfaces with concavities in compressible fluid flow,” Proc. Int. Heat Transfer Conf. (IHTC-14), Washington, USA (2010), pp. 597–601. A. A. Titov, A. I. Leontiev, U. A. Vinogradov, et al., “Experimental investigation of skin friction drag and heat transfer on the surfaces with concavities in compressible fluid flow,” Proc. Int. Heat Transfer Conf. (IHTC-14), Washington, USA (2010), pp. 597–601.
5.
go back to reference Gm. S. Azad, Y. Huang, and J.-Ch. Han, “Impingement heat transfer on dimpled surfaces using a transient liquid crystal technique,” J. Therm. & Heat Transf., 14, No. 2, 186–193 (2000), DOI: 10.2514/2.6530. Gm. S. Azad, Y. Huang, and J.-Ch. Han, “Impingement heat transfer on dimpled surfaces using a transient liquid crystal technique,” J. Therm. & Heat Transf., 14, No. 2, 186–193 (2000), DOI: 10.​2514/​2.​6530.
6.
go back to reference G. I. Mahmood and P. M. Ligrani, “Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure,” Int. J. Heat Mass Transf., 45, No. 10, 2100–2020 (2002), DOI: 10.1016/S0017-9310(01)00314-3.CrossRef G. I. Mahmood and P. M. Ligrani, “Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure,” Int. J. Heat Mass Transf., 45, No. 10, 2100–2020 (2002), DOI: 10.​1016/​S0017-9310(01)00314-3.CrossRef
7.
8.
go back to reference S. A. Burtsev, V. K. Vasil’ev, Yu. A. Vinogradov, et al., “An experimental investigation of the characteristics of surfaces, covered with a regular relief,” Nauka Obrazov., No. 1, 263–290, MGTU (2013), Electronic J. S. A. Burtsev, V. K. Vasil’ev, Yu. A. Vinogradov, et al., “An experimental investigation of the characteristics of surfaces, covered with a regular relief,” Nauka Obrazov., No. 1, 263–290, MGTU (2013), Electronic J.
9.
go back to reference A. V. Lykov, Theory of Heat Conduction, Vysshaya Shkola, Moscow (1967). A. V. Lykov, Theory of Heat Conduction, Vysshaya Shkola, Moscow (1967).
10.
go back to reference L. Sereglind, Application of the Finite Elements Method, Mir, Moscow (1979). L. Sereglind, Application of the Finite Elements Method, Mir, Moscow (1979).
11.
go back to reference O. Zenkevich and K. Morgan, Finite Elements and Approximation, Mir, Moscow (1986). O. Zenkevich and K. Morgan, Finite Elements and Approximation, Mir, Moscow (1986).
12.
go back to reference M. A. Mikheev and I. M. Mikheeva, Principles of Heat Transfer, Energiya, Moscow (1977). M. A. Mikheev and I. M. Mikheeva, Principles of Heat Transfer, Energiya, Moscow (1977).
13.
go back to reference N. A. Kiselev, “Development of a procedure for determining heat transfer coefficients and re-establishing the temperature based on the thermal pattern on the surface of plates in a flow of a compressible gas,” Tepl. Prots. Tekhn., 5, No. 7, 303–312 (2013). N. A. Kiselev, “Development of a procedure for determining heat transfer coefficients and re-establishing the temperature based on the thermal pattern on the surface of plates in a flow of a compressible gas,” Tepl. Prots. Tekhn., 5, No. 7, 303–312 (2013).
Metadata
Title
A Procedure for Determining the Heat Transfer Coefficients of Surfaces with Regular Relief
Authors
N. A. Kiselev
S. A. Burtsev
M. M. Strongin
Publication date
01-12-2015
Publisher
Springer US
Published in
Measurement Techniques / Issue 9/2015
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-015-0835-7

Other articles of this Issue 9/2015

Measurement Techniques 9/2015 Go to the issue