Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 1-2/2013

01-02-2013 | Original Article

A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion

Author: Ridha Hambli

Published in: Medical & Biological Engineering & Computing | Issue 1-2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a simple and practical finite element (FE) model coupled to a quasi-brittle damage law to describe the initiation and progressive propagation of multiple cracks based on element deletion is developed to predict the complete force–displacement curve and the fracture pattern of a human proximal femur under quasi-static load. The motivation of this work was to propose a FE model for possible clinical use with a good compromise between complexity and capability of the simulation. The model considers a limited number of parameters that can predict proximal femur fracture in more adequate physical terms than criteria-based fracture models. Based on experimental results, different damage laws for cortical and trabecular bone are proposed to describe inelastic damage accumulation under excessive load. When the damage parameter reaches its critical value inside an element of the mesh, its stiffness matrix is set to zero, leading to the redistribution of the stress state in the vicinity of the damaged zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein [37] (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-static load. The proposed finite element model leads to more physical results concerning the shape of the force–displacement curve (yielding and fracturing) and the profile of the fractured edge.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abaqus 6.9 Documentation, Analysis User’s Manual Abaqus 6.9 Documentation, Analysis User’s Manual
2.
go back to reference Abdel-Wahab AA, Silberschmidt VV (2011) Numerical modeling of impact fracture of cortical bone tissue using X-FEM. J Theor Appl Mech 49(3):599–619 Abdel-Wahab AA, Silberschmidt VV (2011) Numerical modeling of impact fracture of cortical bone tissue using X-FEM. J Theor Appl Mech 49(3):599–619
3.
go back to reference Baca V, Horak Z, Mikulenka P, Dzupa V (2008) Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Med Eng Phys 30:924–930PubMedCrossRef Baca V, Horak Z, Mikulenka P, Dzupa V (2008) Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Med Eng Phys 30:924–930PubMedCrossRef
4.
go back to reference Baudoin A, Skalli W, de Guise J, Mitton D (2008) Parametric subject-specific model for in vivo 3D reconstruction using bi-planar X-rays: application to the upper femoral extremity. Med Biol Eng Comput 46(8):799–805 Baudoin A, Skalli W, de Guise J, Mitton D (2008) Parametric subject-specific model for in vivo 3D reconstruction using bi-planar X-rays: application to the upper femoral extremity. Med Biol Eng Comput 46(8):799–805
5.
go back to reference Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37:27–35 Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37:27–35
6.
go back to reference Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753PubMedCrossRef Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753PubMedCrossRef
7.
go back to reference Bonnet AS, Postaire M, Lipinski P (2009) Biomechanical study of mandible bone sup-porting a four-implant retained bridge finite element analysis of the influence of bone anisotropy and foodstuff position. Med Eng Phys 31(7):806–815PubMedCrossRef Bonnet AS, Postaire M, Lipinski P (2009) Biomechanical study of mandible bone sup-porting a four-implant retained bridge finite element analysis of the influence of bone anisotropy and foodstuff position. Med Eng Phys 31(7):806–815PubMedCrossRef
8.
go back to reference Brown CU, Yeni Y, Norman TL (2000) Fracture toughness is dependent on bone location: a study of femoral neck, femoral shaft, and the tibial shaft. J Biomed Mater Res 49:380–389PubMedCrossRef Brown CU, Yeni Y, Norman TL (2000) Fracture toughness is dependent on bone location: a study of femoral neck, femoral shaft, and the tibial shaft. J Biomed Mater Res 49:380–389PubMedCrossRef
9.
go back to reference Cheng X, Li J, Lu Y, Keyak J, Lang T (2007) Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone 40:169–174PubMedCrossRef Cheng X, Li J, Lu Y, Keyak J, Lang T (2007) Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone 40:169–174PubMedCrossRef
10.
go back to reference Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie D (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020 Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie D (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020
11.
go back to reference Coelho PG, Fernandes PR, Rodrigues HC, Cardoso JB, Guedes JM (2009) Numerical modeling of bone tissue adaptation—a hierarchical approach for bone apparent density and trabecular structure. J Biomech 42(7):830–837PubMedCrossRef Coelho PG, Fernandes PR, Rodrigues HC, Cardoso JB, Guedes JM (2009) Numerical modeling of bone tissue adaptation—a hierarchical approach for bone apparent density and trabecular structure. J Biomech 42(7):830–837PubMedCrossRef
12.
go back to reference Cotton DW, Whitehead CL, Vyas S, Cooper C, Patterson EA (1994) Are hip fractures caused by falling and breaking or breaking and falling? Photoelastic stress analysis. Forensic Sci Int 65:105–112PubMedCrossRef Cotton DW, Whitehead CL, Vyas S, Cooper C, Patterson EA (1994) Are hip fractures caused by falling and breaking or breaking and falling? Photoelastic stress analysis. Forensic Sci Int 65:105–112PubMedCrossRef
13.
go back to reference Currey JD (1990) Physical characteristics affecting the tensile failure properties of compact bone. J Biomech 23(8):837–844PubMedCrossRef Currey JD (1990) Physical characteristics affecting the tensile failure properties of compact bone. J Biomech 23(8):837–844PubMedCrossRef
14.
go back to reference Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton
15.
go back to reference Chaboche JL (1981) Continuum damage mechanics: a tool to describe phenomena before crack initiation. Nucl Eng Des 64:233–247CrossRef Chaboche JL (1981) Continuum damage mechanics: a tool to describe phenomena before crack initiation. Nucl Eng Des 64:233–247CrossRef
16.
go back to reference Cowin SC (ed) (2001) Bone mechanics handbook. CRC Press, Boca Raton Cowin SC (ed) (2001) Bone mechanics handbook. CRC Press, Boca Raton
17.
go back to reference Doblaré M, García JM (2002) Anisotropic bone remodeling model based on a continuum damage-repair theory. J Biomech 35(1):1–17PubMedCrossRef Doblaré M, García JM (2002) Anisotropic bone remodeling model based on a continuum damage-repair theory. J Biomech 35(1):1–17PubMedCrossRef
18.
go back to reference Duchemin L, Mitton D, Jolivet E, Bousson V, Laredo JD, Skalli W (2008) An anatomical subject-specific FE-model for hip fracture load prediction. Comput Methods Biomech Biomed Eng 11(2):105–111CrossRef Duchemin L, Mitton D, Jolivet E, Bousson V, Laredo JD, Skalli W (2008) An anatomical subject-specific FE-model for hip fracture load prediction. Comput Methods Biomech Biomed Eng 11(2):105–111CrossRef
19.
go back to reference Dragomir-Daescu D, Op Den Buijs J, McEeligot S, Dai Y, Entwistle RC, Salas C, Melton III J, Bennet E, Khosla S, Amin S (2010) Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng 39(2):742–755 Dragomir-Daescu D, Op Den Buijs J, McEeligot S, Dai Y, Entwistle RC, Salas C, Melton III J, Bennet E, Khosla S, Amin S (2010) Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng 39(2):742–755
20.
go back to reference Fernandes P, Rodrigues H, Jacobs CR (1999) A model of bone adaptation using a global optimization criterion based on the trajectorial theory of Wolff. Comput Methods Biomech Biomed Eng 2:125–138CrossRef Fernandes P, Rodrigues H, Jacobs CR (1999) A model of bone adaptation using a global optimization criterion based on the trajectorial theory of Wolff. Comput Methods Biomech Biomed Eng 2:125–138CrossRef
21.
go back to reference Fondrk MT, Bahniuk EH, Davy DT, Michaels C (1988) Some viscoplastic characteristics of bovine and human cortical bone. J Biomech 21(8):623–630PubMedCrossRef Fondrk MT, Bahniuk EH, Davy DT, Michaels C (1988) Some viscoplastic characteristics of bovine and human cortical bone. J Biomech 21(8):623–630PubMedCrossRef
22.
go back to reference Fondrk MT, Bahniuk EH, Davy DT (1999) A damage model for nonlinear tensile behavior of cortical bone. J Biomed Eng 121:533–541 Fondrk MT, Bahniuk EH, Davy DT (1999) A damage model for nonlinear tensile behavior of cortical bone. J Biomed Eng 121:533–541
23.
go back to reference Fondrk MT, Bahniuk EH, Davy DT (1999) Inelastic strain accumulation in cortical bone during rapid transient tensile loading. J Biomech Eng 121:616–621PubMedCrossRef Fondrk MT, Bahniuk EH, Davy DT (1999) Inelastic strain accumulation in cortical bone during rapid transient tensile loading. J Biomech Eng 121:616–621PubMedCrossRef
24.
go back to reference Ford CM, Keaveny TM, Hayes WC (1996) The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res 11:377–383PubMedCrossRef Ford CM, Keaveny TM, Hayes WC (1996) The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res 11:377–383PubMedCrossRef
25.
go back to reference Garcia D, Zysset P, Charlebois M, Curnier A (2009) A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech Model Mechanobiol 8(2):149–165PubMedCrossRef Garcia D, Zysset P, Charlebois M, Curnier A (2009) A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech Model Mechanobiol 8(2):149–165PubMedCrossRef
26.
go back to reference Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS (2008) Experimental validation of a finite element model of a human cadaveric tibia. J Biomech Eng 130(3):031016PubMedCrossRef Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS (2008) Experimental validation of a finite element model of a human cadaveric tibia. J Biomech Eng 130(3):031016PubMedCrossRef
27.
go back to reference Hambli R, Bettamer A, Allaoui S (2012) Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Med Eng Phys 34(2):202–210PubMedCrossRef Hambli R, Bettamer A, Allaoui S (2012) Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Med Eng Phys 34(2):202–210PubMedCrossRef
28.
go back to reference Hambli R (2011) Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. Int J Numer Methods Biomed Eng 4(27):461–475 Hambli R (2011) Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. Int J Numer Methods Biomed Eng 4(27):461–475
29.
go back to reference Hambli R (2011) Apparent damage accumulation in cancellous bone using neural networks. J Mech Behav Biomed Mater 4(6):868–878PubMedCrossRef Hambli R (2011) Apparent damage accumulation in cancellous bone using neural networks. J Mech Behav Biomed Mater 4(6):868–878PubMedCrossRef
30.
go back to reference Hellmich C, Kober C, Erdmann B (2008) Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann Biomed Eng 36:108–122PubMedCrossRef Hellmich C, Kober C, Erdmann B (2008) Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann Biomed Eng 36:108–122PubMedCrossRef
31.
go back to reference Juszczyk MM, Cristofolini L, Viceconti M (2011) The human proximal femur behaves linearly elastic up to failure under physiological loading conditions. J Biomech 44(12):2259–2266 Juszczyk MM, Cristofolini L, Viceconti M (2011) The human proximal femur behaves linearly elastic up to failure under physiological loading conditions. J Biomech 44(12):2259–2266
32.
go back to reference Kaneko TS, Pejcic MR, Tehranzadeh J, Keyak JH (2003) Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions. Med Eng Phys 25(6):445–454PubMedCrossRef Kaneko TS, Pejcic MR, Tehranzadeh J, Keyak JH (2003) Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions. Med Eng Phys 25(6):445–454PubMedCrossRef
33.
go back to reference Kotha SP, Guzelsu N (2003) Tensile damage and its effects on cortical bone. J Biomech 36(11):1683–1689PubMedCrossRef Kotha SP, Guzelsu N (2003) Tensile damage and its effects on cortical bone. J Biomech 36(11):1683–1689PubMedCrossRef
34.
go back to reference Keaveny TM, Wachtel EF, Kopperdahl DL (1999) Mechanical behavior of human trabecular bone after overloading. J Orthop Res 17:346–353PubMedCrossRef Keaveny TM, Wachtel EF, Kopperdahl DL (1999) Mechanical behavior of human trabecular bone after overloading. J Orthop Res 17:346–353PubMedCrossRef
35.
go back to reference Keyak J, Meagher J, Skinner H, Mote J (1990) Automated three-dimensional finite element modelling of bone: a new method. ASME J Biomech Eng 12:389–397 Keyak J, Meagher J, Skinner H, Mote J (1990) Automated three-dimensional finite element modelling of bone: a new method. ASME J Biomech Eng 12:389–397
36.
go back to reference Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173PubMedCrossRef Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173PubMedCrossRef
37.
go back to reference Keyak JH, Falkinstein Y (2003) Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys 25:781–787PubMedCrossRef Keyak JH, Falkinstein Y (2003) Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys 25:781–787PubMedCrossRef
38.
go back to reference Koivumäki JE, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jämsä T (2012) Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50(4):824–829PubMedCrossRef Koivumäki JE, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, Jämsä T (2012) Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50(4):824–829PubMedCrossRef
39.
go back to reference Koivumaki JE, Thevenot J, Pulkkinen P, Salmi JA, Kuhn V, Lochmuller EM, Link TM, Eckstein F, Jamsa T (2010) Does femoral strain distribution coincide with the occurrence of cervical versus trochanteric hip fractures? An experimental finite element study. Med Biol Eng Comput 48:711–717PubMedCrossRef Koivumaki JE, Thevenot J, Pulkkinen P, Salmi JA, Kuhn V, Lochmuller EM, Link TM, Eckstein F, Jamsa T (2010) Does femoral strain distribution coincide with the occurrence of cervical versus trochanteric hip fractures? An experimental finite element study. Med Biol Eng Comput 48:711–717PubMedCrossRef
40.
go back to reference Kowalczyk P (2010) Simulation of orthotropic microstructure remodeling of cancellous bone. J Biomech 43(3):563–569PubMedCrossRef Kowalczyk P (2010) Simulation of orthotropic microstructure remodeling of cancellous bone. J Biomech 43(3):563–569PubMedCrossRef
41.
go back to reference Lee YS, Oh SH, Seon JK, Song EK, Yoon TR (2006) 3D femoral neck anteversion measurements based on the posterior femoral plane in ORTHODOC system. Med Biol Eng Comput 44:895–906PubMedCrossRef Lee YS, Oh SH, Seon JK, Song EK, Yoon TR (2006) 3D femoral neck anteversion measurements based on the posterior femoral plane in ORTHODOC system. Med Biol Eng Comput 44:895–906PubMedCrossRef
42.
go back to reference Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89CrossRef Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89CrossRef
43.
go back to reference Link M, Vieth V, Langenberg R, Meier N, Lotter A, Newitt D, Majumdar S (2003) Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 72:156–165PubMedCrossRef Link M, Vieth V, Langenberg R, Meier N, Lotter A, Newitt D, Majumdar S (2003) Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 72:156–165PubMedCrossRef
44.
go back to reference Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part I—linear analysis. J Biomech Eng 113:353–360PubMedCrossRef Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part I—linear analysis. J Biomech Eng 113:353–360PubMedCrossRef
45.
go back to reference Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part II—nonlinear analysis. J Biomech Eng 113:361–365PubMedCrossRef Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part II—nonlinear analysis. J Biomech Eng 113:361–365PubMedCrossRef
46.
go back to reference Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261PubMedCrossRef Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261PubMedCrossRef
47.
go back to reference Malik L, Stover M, Martin B, Gibeling C (2003) Equine cortical bone exhibits rising R-curve fracture mechanics. J Biomech 36:191–198PubMedCrossRef Malik L, Stover M, Martin B, Gibeling C (2003) Equine cortical bone exhibits rising R-curve fracture mechanics. J Biomech 36:191–198PubMedCrossRef
48.
go back to reference Martelli S, Taddei F, Varini E, Cristofolini L, Gill L, Viceconti M (2005) Accuracy of subject specific finite-element models of long bones from CT data: an in vitro study. Proc ICCB II 1:251–265 Martelli S, Taddei F, Varini E, Cristofolini L, Gill L, Viceconti M (2005) Accuracy of subject specific finite-element models of long bones from CT data: an in vitro study. Proc ICCB II 1:251–265
49.
go back to reference MacNeil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42(6):1203–1213PubMedCrossRef MacNeil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42(6):1203–1213PubMedCrossRef
50.
go back to reference Mazars J, Pijaudier-Cabot G (1996) From damage to fracture mechanics and conversely: a combined approach. Int J Solid Struct 33:3327–3342CrossRef Mazars J, Pijaudier-Cabot G (1996) From damage to fracture mechanics and conversely: a combined approach. Int J Solid Struct 33:3327–3342CrossRef
51.
go back to reference Miller Z, Fuchs M, Arcan M (2002) Trabecular bone adaptation with an orthotropic material model. J Biomech 35(2):247–256PubMedCrossRef Miller Z, Fuchs M, Arcan M (2002) Trabecular bone adaptation with an orthotropic material model. J Biomech 35(2):247–256PubMedCrossRef
52.
go back to reference Murakami S, Liu Y (1995) Mesh-dependence in local approach to creep fracture. Int J Damage Mech 4:230–250CrossRef Murakami S, Liu Y (1995) Mesh-dependence in local approach to creep fracture. Int J Damage Mech 4:230–250CrossRef
53.
go back to reference Nagaraja S, Couse TL, Guldberg RE (2005) Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech 38:707–716PubMedCrossRef Nagaraja S, Couse TL, Guldberg RE (2005) Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech 38:707–716PubMedCrossRef
54.
go back to reference Natali A, Carniel E, Pavan P (2008) Constitutive modelling of inelastic behaviour of cortical bone. Med Eng Phys 30(7):905–912PubMedCrossRef Natali A, Carniel E, Pavan P (2008) Constitutive modelling of inelastic behaviour of cortical bone. Med Eng Phys 30(7):905–912PubMedCrossRef
55.
go back to reference Ota T, Yamamoto I, Morita R (1999) Fracture simulation of femoral bone using finite-element method: how a fracture initiates and proceeds. Bone Miner Metab 17(2):108–112CrossRef Ota T, Yamamoto I, Morita R (1999) Fracture simulation of femoral bone using finite-element method: how a fracture initiates and proceeds. Bone Miner Metab 17(2):108–112CrossRef
56.
go back to reference Pattin CA, Caler WE, Carter DR (1996) Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 29:69–79PubMedCrossRef Pattin CA, Caler WE, Carter DR (1996) Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 29:69–79PubMedCrossRef
57.
go back to reference Parsamian GP (2002) Damage mechanics of human cortical bone. Ph.D. Thesis, College of Engineering and Mineral Resources, West Virginia University Parsamian GP (2002) Damage mechanics of human cortical bone. Ph.D. Thesis, College of Engineering and Mineral Resources, West Virginia University
58.
go back to reference Peng L, Bai J, Zeng X, Zhou Y (2006) Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys 28:227–233PubMedCrossRef Peng L, Bai J, Zeng X, Zhou Y (2006) Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys 28:227–233PubMedCrossRef
59.
go back to reference Prevrhal S, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys 30(1):1–8PubMedCrossRef Prevrhal S, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys 30(1):1–8PubMedCrossRef
60.
go back to reference Popescu FC, Viceconti M, Traina F, Toni A (2005) Evaluation of achievable registration accuracy of the femur during minimally invasive total hip replacement. Med Biol Eng Comput 43:421–430PubMedCrossRef Popescu FC, Viceconti M, Traina F, Toni A (2005) Evaluation of achievable registration accuracy of the femur during minimally invasive total hip replacement. Med Biol Eng Comput 43:421–430PubMedCrossRef
61.
go back to reference Reilly DT, Burstein AH (1974) Review article. The mechanical properties of cortical bone. J Bone Jt Surg Am 56:1001–1022 Reilly DT, Burstein AH (1974) Review article. The mechanical properties of cortical bone. J Bone Jt Surg Am 56:1001–1022
62.
go back to reference Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405PubMedCrossRef Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405PubMedCrossRef
63.
go back to reference Saanouni K, Chaboche J-L, Lesne PM (1989) On the creep crack-growth prediction by a non local damage formulation. Eur J Mech A Solids 8:437–459 Saanouni K, Chaboche J-L, Lesne PM (1989) On the creep crack-growth prediction by a non local damage formulation. Eur J Mech A Solids 8:437–459
64.
go back to reference San Antonio T, Ciaccia M, Muller-Karger C, Casanova E (2011) Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions. Med Eng Phys 34(7):914–919 San Antonio T, Ciaccia M, Muller-Karger C, Casanova E (2011) Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions. Med Eng Phys 34(7):914–919
65.
go back to reference Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525PubMedCrossRef Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525PubMedCrossRef
66.
go back to reference Schneider R, Faust G, Hindenlang U, Helwig P (2009) Inhomogeneous, orthotropic material model for the cortical structure of long bones modeled on the basis of clinical CT or density data. Comput Methods Appl Mech Eng 198(27–29):2167–2174CrossRef Schneider R, Faust G, Hindenlang U, Helwig P (2009) Inhomogeneous, orthotropic material model for the cortical structure of long bones modeled on the basis of clinical CT or density data. Comput Methods Appl Mech Eng 198(27–29):2167–2174CrossRef
67.
go back to reference Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M (2007) Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech 40:2982–2989PubMedCrossRef Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M (2007) Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech 40:2982–2989PubMedCrossRef
68.
go back to reference Schileo E, Taddei F, Cristofolini L, Viceconti M (2008) Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech 41(2):356–367PubMedCrossRef Schileo E, Taddei F, Cristofolini L, Viceconti M (2008) Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech 41(2):356–367PubMedCrossRef
69.
go back to reference Smith MD, Cody DD, Cooperman AM, Goldstein SA, Matthews LS, Flynn MJ (1992) Proximal femur bone density and its correlation to fracture load and hip screw penetration load. Clin Orthop Relat Res 283:244–251PubMed Smith MD, Cody DD, Cooperman AM, Goldstein SA, Matthews LS, Flynn MJ (1992) Proximal femur bone density and its correlation to fracture load and hip screw penetration load. Clin Orthop Relat Res 283:244–251PubMed
70.
go back to reference Tanner DA, Kloseck M, Crilly RG, Chesworth B, Gillilan J (2010) Hip fracture types in men and women change differently with age. BMC Geriatr 10:12PubMedCrossRef Tanner DA, Kloseck M, Crilly RG, Chesworth B, Gillilan J (2010) Hip fracture types in men and women change differently with age. BMC Geriatr 10:12PubMedCrossRef
71.
go back to reference Taylor WR, Roland E, Ploeg H, Hertig D, Klabunde R, Warner MD, Hobatho MC, Rakotomanana L, Clift SE (2002) Determination of orthotropic bone elastic constants using FEA and modal analysis. J Biomech 35:767–773PubMedCrossRef Taylor WR, Roland E, Ploeg H, Hertig D, Klabunde R, Warner MD, Hobatho MC, Rakotomanana L, Clift SE (2002) Determination of orthotropic bone elastic constants using FEA and modal analysis. J Biomech 35:767–773PubMedCrossRef
72.
go back to reference Taylor D, Lee TC (2003) A crack growth model for the simulation of fatigue in bone. Int J Fatigue 2:387–395CrossRef Taylor D, Lee TC (2003) A crack growth model for the simulation of fatigue in bone. Int J Fatigue 2:387–395CrossRef
73.
go back to reference Tabor Z, Rokita E (2007) Quantifying anisotropy of trabecular bone from gray-level images. Bone 40(4):966–972PubMedCrossRef Tabor Z, Rokita E (2007) Quantifying anisotropy of trabecular bone from gray-level images. Bone 40(4):966–972PubMedCrossRef
74.
go back to reference Taddei F, Cristofolini L, Martelli S, Gill H, Viceconti M (2006) Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J Biomech 39:2457–2467PubMedCrossRef Taddei F, Cristofolini L, Martelli S, Gill H, Viceconti M (2006) Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J Biomech 39:2457–2467PubMedCrossRef
75.
go back to reference Trabelsi N, Yosibash Z (2011) Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments. J Biomech Eng 133(6):061001PubMedCrossRef Trabelsi N, Yosibash Z (2011) Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments. J Biomech Eng 133(6):061001PubMedCrossRef
76.
go back to reference Tellache M, Pithioux M, Chabrand P, Hochard C (2009) Femoral neck fracture prediction by anisotropic yield criteria. Eur J Comput Mech 18(1):33–41 Tellache M, Pithioux M, Chabrand P, Hochard C (2009) Femoral neck fracture prediction by anisotropic yield criteria. Eur J Comput Mech 18(1):33–41
77.
go back to reference Ural A, Vashishth D (2007) Anisotropy of age-related toughness loss in human cortical bone: a finite element study. J Biomech 40:1606–1614PubMedCrossRef Ural A, Vashishth D (2007) Anisotropy of age-related toughness loss in human cortical bone: a finite element study. J Biomech 40:1606–1614PubMedCrossRef
78.
go back to reference de Vree JHP, Brekelmans WAM, van Gils MAJ (1995) Comparison of nonlocal approaches in continuum damage mechanics. Comput Struct 55:581–588CrossRef de Vree JHP, Brekelmans WAM, van Gils MAJ (1995) Comparison of nonlocal approaches in continuum damage mechanics. Comput Struct 55:581–588CrossRef
79.
go back to reference Vashishth DJ, Koontz Qiu S, Cannon-Lundin D, Yeni YN, Schaffler MB, Fyhrie DP (2000) In vivo diffuse damage in human trabecular bone. Bone 26(2):147–152PubMedCrossRef Vashishth DJ, Koontz Qiu S, Cannon-Lundin D, Yeni YN, Schaffler MB, Fyhrie DP (2000) In vivo diffuse damage in human trabecular bone. Bone 26(2):147–152PubMedCrossRef
80.
go back to reference Vashishth D, Tanner E, Bonfield W (2003) Experimental validation of a microcracking-based toughening mechanism for cortical bone. J Biomech 36(1):121–124PubMedCrossRef Vashishth D, Tanner E, Bonfield W (2003) Experimental validation of a microcracking-based toughening mechanism for cortical bone. J Biomech 36(1):121–124PubMedCrossRef
81.
go back to reference Vashishth D, Behiri JC, W. Bonfield W (1997) Crack growth resistance in cortical bone: concept of microcrack toughening. J Biomech 30(8):763–769PubMedCrossRef Vashishth D, Behiri JC, W. Bonfield W (1997) Crack growth resistance in cortical bone: concept of microcrack toughening. J Biomech 30(8):763–769PubMedCrossRef
82.
go back to reference Verhulp E, van Rietbergen B, Huiskes R (2006) Comparison of micro-level and continuum level voxel models of the proximal femur. J Biomech 39:2951–2957PubMedCrossRef Verhulp E, van Rietbergen B, Huiskes R (2006) Comparison of micro-level and continuum level voxel models of the proximal femur. J Biomech 39:2951–2957PubMedCrossRef
83.
go back to reference Wang X, Zauel R, Fyhrie DP (2008) Post failure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method. J Biomech 41:2654–2658PubMedCrossRef Wang X, Zauel R, Fyhrie DP (2008) Post failure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method. J Biomech 41:2654–2658PubMedCrossRef
84.
go back to reference Wasserman N, Yerramshetty J, Akkus O (2005) Microcracks colocalize within highly mineralized regions of cortical bone tissue. Eur J Morphol 42(1–2):43–51PubMedCrossRef Wasserman N, Yerramshetty J, Akkus O (2005) Microcracks colocalize within highly mineralized regions of cortical bone tissue. Eur J Morphol 42(1–2):43–51PubMedCrossRef
85.
go back to reference Wirtz DC, Pandorf T, Portheine F, Radermacher K, Schiffers N, Prescher A, Weichert D, Niethard FU (2003) Concept and development of an orthotropic FE model of the proximal femur. J Biomech 36:289–293PubMedCrossRef Wirtz DC, Pandorf T, Portheine F, Radermacher K, Schiffers N, Prescher A, Weichert D, Niethard FU (2003) Concept and development of an orthotropic FE model of the proximal femur. J Biomech 36:289–293PubMedCrossRef
86.
go back to reference Wolfram U, Wilke HJ, Zysset PK (2011) Damage accumulation in vertebral trabecular bone depends on loading mode and direction. J Biomech 44(6):1164–1169 Wolfram U, Wilke HJ, Zysset PK (2011) Damage accumulation in vertebral trabecular bone depends on loading mode and direction. J Biomech 44(6):1164–1169
87.
go back to reference Yang H, Shen L, Demetropoulos K, King I, Kolodziej P, Levine S, Fitzgerald J (1996) The relationship between loading conditions and fracture patterns of the proximal femur. J Biomech Eng 118:575–578 Yang H, Shen L, Demetropoulos K, King I, Kolodziej P, Levine S, Fitzgerald J (1996) The relationship between loading conditions and fracture patterns of the proximal femur. J Biomech Eng 118:575–578
88.
go back to reference Yang D, Cox N, Nalla K, Ritchie O (2006) Re-evaluating the toughness of human cortical bone. Bone 38:878–887PubMedCrossRef Yang D, Cox N, Nalla K, Ritchie O (2006) Re-evaluating the toughness of human cortical bone. Bone 38:878–887PubMedCrossRef
89.
go back to reference Yang H, Ma X, Guo T (2010) Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur. Med Eng Phys 32(6):553–560PubMedCrossRef Yang H, Ma X, Guo T (2010) Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur. Med Eng Phys 32(6):553–560PubMedCrossRef
90.
go back to reference Yosibash Z, Tal D, Trabelsi N (2010) Inhomogeneous orthotropic material properties high-order finite-element analysis with inhomogeneous orthotropic material properties. Philos Trans R Soc A 368:2707–2723CrossRef Yosibash Z, Tal D, Trabelsi N (2010) Inhomogeneous orthotropic material properties high-order finite-element analysis with inhomogeneous orthotropic material properties. Philos Trans R Soc A 368:2707–2723CrossRef
91.
go back to reference Yosibash Z, Trabelsi N, Milgrom C (2007) Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech 40:3688–3699PubMedCrossRef Yosibash Z, Trabelsi N, Milgrom C (2007) Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech 40:3688–3699PubMedCrossRef
92.
go back to reference Zysset PK (1994) A constitutive law for trabecular bone. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne Zysset PK (1994) A constitutive law for trabecular bone. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne
93.
go back to reference Zysset PK, Curnier A (1995) An alternative model for anisotropic elasticity based on fabric tensors. Mech Mater 21(4):243–250CrossRef Zysset PK, Curnier A (1995) An alternative model for anisotropic elasticity based on fabric tensors. Mech Mater 21(4):243–250CrossRef
Metadata
Title
A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion
Author
Ridha Hambli
Publication date
01-02-2013
Publisher
Springer-Verlag
Published in
Medical & Biological Engineering & Computing / Issue 1-2/2013
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-012-0986-5

Other articles of this Issue 1-2/2013

Medical & Biological Engineering & Computing 1-2/2013 Go to the issue

Premium Partner