Skip to main content
Top

2021 | OriginalPaper | Chapter

A Reliability Based Crack Propagation Model for Reinforced Concrete Bridge Piers Subject to Vehicle Impact

Authors : Suman Roy, Andrew Sorensen

Published in: 18th International Probabilistic Workshop

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bridges play a critical role in transportation infrastructure networks. As such, their ability to withstand hazardous loading scenarios is essential. The response of bridges and specifically of bridge piers to hazardous loading scenarios such as earthquake and blast have received significant attention. However, their behavior under vehicle impact has received less attention. This is significant due to the fact that the frequency of occurrence for vehicular impact is appreciably higher than that of earthquake and blast. Of larger significance however is the fact that bridge piers that have experienced impact loading may have reduced capacities to withstand secondary hazardous loadings. This multi-hazard loading scenario of bridge piers is ideally suited for reliability-based risk analysis methods for study; however, very few such studies exist. In this research, a reliability-based model is used to determine the crack propagation in circular reinforced concrete bridge piers at different strain rates. Crack propagation is an important characteristic for structural health and ability to withstand future loading. However, in the case of vehicular impact, only the deformation of the pier is typically taken into account for determine post impact serviceability. In the model, quasi-static to dynamic strain rates are considered for steel while only dynamic strain rates are considered for concrete. Using Monte Carlo simulation, crack propagation rates for both Grade 60 and Grade 80 reinforcing steel are developed. The Hasofer-Lind reliability method is then used to determine the subsequent reliability of the piers post-impact. Models representing the dynamic reliability indices validating limit state equations show persuasive and practical trends. Furthermore, the model can serve as a design tool in predicting serviceability as well as analyzing design scenarios in an economic and practical way.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shahbazpanahi, S., Hejazi, F., Paknahad, M., Rahimipour, A., & Nassimi, M. R. (2018). Modelling crack propagation in RC beam-column joints. Teh Vjesn, 25, 1183–1189. Shahbazpanahi, S., Hejazi, F., Paknahad, M., Rahimipour, A., & Nassimi, M. R. (2018). Modelling crack propagation in RC beam-column joints. Teh Vjesn, 25, 1183–1189.
2.
go back to reference Bao, X., & Li, B. (2010). Residual strength of blast damaged reinforced concrete columns. International Journal of Impact Engineering, 37, 295–308.CrossRef Bao, X., & Li, B. (2010). Residual strength of blast damaged reinforced concrete columns. International Journal of Impact Engineering, 37, 295–308.CrossRef
3.
go back to reference Parme, A. L. (1976). Recommendations for design of beam-column joints in monolithic reinforced concrete structures. ACI Journal, 375. Parme, A. L. (1976). Recommendations for design of beam-column joints in monolithic reinforced concrete structures. ACI Journal, 375.
4.
go back to reference Code UB. (1997). In International Conference of Building Officials, Whittier CA. Code UB. (1997). In International Conference of Building Officials, Whittier CA.
5.
go back to reference Sheikh, M. N., & Légeron, F. (2010). Seismic performance-based design of bridges with quantitative local performance criteria. In Proceedings, Annual Conference—Canadian Society for Civil Engineering (Vol. 2, pp. 913–22). Sheikh, M. N., & Légeron, F. (2010). Seismic performance-based design of bridges with quantitative local performance criteria. In Proceedings, Annual Conference—Canadian Society for Civil Engineering (Vol. 2, pp. 913–22).
6.
go back to reference An, X., Maekawa, K., & Okamura, H. (1997). Numerical simulation of size effect in shear strength of RC beams. Doboku Gakkai Ronbunshu, 1997, 297–316.CrossRef An, X., Maekawa, K., & Okamura, H. (1997). Numerical simulation of size effect in shear strength of RC beams. Doboku Gakkai Ronbunshu, 1997, 297–316.CrossRef
7.
go back to reference Choine, M. N., Kashani, M. M., Lowes, L. N., O’Connor, A., Crewe, A. J., Alexander, N. A., et al. (2016). Nonlinear dynamic analysis and seismic fragility assessment of a corrosion damaged integral bridge. International Journal of Structural Integrity, 7, 227.CrossRef Choine, M. N., Kashani, M. M., Lowes, L. N., O’Connor, A., Crewe, A. J., Alexander, N. A., et al. (2016). Nonlinear dynamic analysis and seismic fragility assessment of a corrosion damaged integral bridge. International Journal of Structural Integrity, 7, 227.CrossRef
8.
go back to reference Thomas, R. J., Steel, K., & Sorensen, A. D. (2018). Reliability analysis of circular reinforced concrete columns subject to sequential vehicular impact and blast loading. Engineering Structures, 168, 838–851.CrossRef Thomas, R. J., Steel, K., & Sorensen, A. D. (2018). Reliability analysis of circular reinforced concrete columns subject to sequential vehicular impact and blast loading. Engineering Structures, 168, 838–851.CrossRef
9.
go back to reference Nowak, A. S., & Collins, K. R. (2012). Reliability of structures. CRC Press. Nowak, A. S., & Collins, K. R. (2012). Reliability of structures. CRC Press.
10.
go back to reference Jokūbaitis, V., & Juknevičius, L. (2013). Critical depth of normal cracks in reinforced concrete beams of rectangular cross-section. Journal of Civil Engineering and Management, 19, 583–590.CrossRef Jokūbaitis, V., & Juknevičius, L. (2013). Critical depth of normal cracks in reinforced concrete beams of rectangular cross-section. Journal of Civil Engineering and Management, 19, 583–590.CrossRef
11.
go back to reference Mancuso, C., & Bartlett, F. M. (2017). ACI 318–14 criteria for computing instantaneous deflections. ACI Structural Journal, 114. Mancuso, C., & Bartlett, F. M. (2017). ACI 318–14 criteria for computing instantaneous deflections. ACI Structural Journal, 114.
12.
go back to reference Cowper, G., & Symonds, P. (1957). Strain hardening and strain-rate effects in the impact loading of cantilever beam. Division of Applied Mathematics at Brown University, 1–46. Cowper, G., & Symonds, P. (1957). Strain hardening and strain-rate effects in the impact loading of cantilever beam. Division of Applied Mathematics at Brown University, 1–46.
13.
go back to reference Allam, S. M., Shoukry, M. S., Rashad, G. E., & Hassan, A. S. (2012). Crack width evaluation for flexural RC members. Alexandria Engineering Journal, 51, 211–220.CrossRef Allam, S. M., Shoukry, M. S., Rashad, G. E., & Hassan, A. S. (2012). Crack width evaluation for flexural RC members. Alexandria Engineering Journal, 51, 211–220.CrossRef
14.
go back to reference Malvar, L. J., & Crawford, J. E. (1998). Dynamic increase factors for steel reinforcing bars. In 28th DDESB Seminar, Orlando, USA. Malvar, L. J., & Crawford, J. E. (1998). Dynamic increase factors for steel reinforcing bars. In 28th DDESB Seminar, Orlando, USA.
15.
go back to reference Malvar, L. J., & Crawford, J. E. Dynamic increase factors for concrete. Port Hhueneme, CA: Naval Facilities Engineering Service Center. Malvar, L. J., & Crawford, J. E. Dynamic increase factors for concrete. Port Hhueneme, CA: Naval Facilities Engineering Service Center.
16.
go back to reference Abou-Zeid, M., Fowler, D. W., Nawy, E. G., Allen, J. H., Halvorsen, G. T., Poston, R. W., et al. (2001). Control of cracking in concrete structures. Report, ACI Communications, 224, 12–16. Abou-Zeid, M., Fowler, D. W., Nawy, E. G., Allen, J. H., Halvorsen, G. T., Poston, R. W., et al. (2001). Control of cracking in concrete structures. Report, ACI Communications, 224, 12–16.
17.
go back to reference Bastidas-Arteaga, E., & Soubra, A.-H. (2014). Reliability analysis methods. ALERT Dr Sch 2014-Stochastic Anal Inverse Model, 53–77. Bastidas-Arteaga, E., & Soubra, A.-H. (2014). Reliability analysis methods. ALERT Dr Sch 2014-Stochastic Anal Inverse Model, 53–77.
18.
go back to reference Mestrovic, D., Cizmar, D., & Miculinic, L. (2008). Reliability of concrete columns under vehicle impact. In 10th International Conference on Shock & Impact Loads on Structures (pp. 157–65). Mestrovic, D., Cizmar, D., & Miculinic, L. (2008). Reliability of concrete columns under vehicle impact. In 10th International Conference on Shock & Impact Loads on Structures (pp. 157–65).
Metadata
Title
A Reliability Based Crack Propagation Model for Reinforced Concrete Bridge Piers Subject to Vehicle Impact
Authors
Suman Roy
Andrew Sorensen
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-73616-3_7