Skip to main content
Top

2010 | OriginalPaper | Chapter

9. A Reproducing Kernel Hilbert Space Framework for ITL

Authors : Jianwu Xu, Robert Jenssen, Antonio Paiva, Il Park

Published in: Information Theoretic Learning

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

During the last decade, research on Mercer kernel-based learning algorithms has flourished [294, 226, 289]. These algorithms include, for example, the support vector machine (SVM) [63], kernel principal component analysis (KPCA) [289], and kernel Fisher discriminant analysis (KFDA) [219]. The common property of these methods is that they operate linearly, as they are explicitly expressed in terms of inner products in a transformed data space that is a reproducing kernel Hilbert space (RKHS). Most often they correspond to nonlinear operators in the data space, and they are still relatively easy to compute using the so-called “kernel-trick”. The kernel trick is no trick at all; it refers to a property of the RKHS that enables the computation of inner products in a potentially infinite-dimensional feature space, by a simple kernel evaluation in the input space. As we may expect, this is a computational saving step that is one of the big appeals of RKHS. At first glance one may even think that it defeats the “no free lunch theorem” (get something for nothing), but the fact of the matter is that the price of RKHS is the need for regularization and in the memory requirements as they are memory-intensive methods. Kernel-based methods (sometimes also called Mercer kernel methods) have been applied successfully in several applications, such as pattern and object recognition [194], time series prediction [225], and DNA and protein analysis [350], to name just a few.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference Aronszajn N., The theory of reproducing kernels and their applications, Cambridge Philos. Soc. Proc., vol. 39:133–153, 1943.CrossRefMathSciNet Aronszajn N., The theory of reproducing kernels and their applications, Cambridge Philos. Soc. Proc., vol. 39:133–153, 1943.CrossRefMathSciNet
11.
go back to reference Babich G., Camps O., Weighted Parzen windows for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell., 18(5):567–570, 1996.CrossRef Babich G., Camps O., Weighted Parzen windows for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell., 18(5):567–570, 1996.CrossRef
12.
go back to reference Bach F., Jordan M., Kernel independent component analysis, J. Mach. Learn. Res., 3:1–48, 2002.MathSciNet Bach F., Jordan M., Kernel independent component analysis, J. Mach. Learn. Res., 3:1–48, 2002.MathSciNet
27.
go back to reference Beirlant J., Zuijlen M., The empirical distribution function and strong laws for functions of order statistics of uniform spacings, J. Multiva. Anal., 16:300–317, 1985.CrossRefMATH Beirlant J., Zuijlen M., The empirical distribution function and strong laws for functions of order statistics of uniform spacings, J. Multiva. Anal., 16:300–317, 1985.CrossRefMATH
48.
go back to reference Carnell, A., Richardson, D., Linear algebra for time series of spikes. In: Proc. European Symp. on Artificial Neural Networks, pp. 363–368. Bruges, Belgium (2005) Carnell, A., Richardson, D., Linear algebra for time series of spikes. In: Proc. European Symp. on Artificial Neural Networks, pp. 363–368. Bruges, Belgium (2005)
63.
go back to reference Cortez C., Vapnik V., Support vector networks. Mach. Learn., 20:273–297, 1995. Cortez C., Vapnik V., Support vector networks. Mach. Learn., 20:273–297, 1995.
64.
go back to reference Cover T., Classification and generalization capabilities of linear threshold units, Rome air force technical documentary report RADC-TDR-64-32, Tech. Rep., Feb 1964. Cover T., Classification and generalization capabilities of linear threshold units, Rome air force technical documentary report RADC-TDR-64-32, Tech. Rep., Feb 1964.
67.
go back to reference Dayan, P. Abbott L.F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge, MA, 2001. Dayan, P. Abbott L.F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge, MA, 2001.
73.
go back to reference Di Marzio M., Taylor C., Kernel density classification and boosting: An L2 analysis. Statist Comput., 15(2):113–123, 2004.CrossRef Di Marzio M., Taylor C., Kernel density classification and boosting: An L2 analysis. Statist Comput., 15(2):113–123, 2004.CrossRef
74.
go back to reference Diggle P., Marron J.S., Equivalence of smoothing parameter selectors in density and intensity estimation. J. Am. Statist. Assoc. 83(403):793–800, 1988.CrossRefMATHMathSciNet Diggle P., Marron J.S., Equivalence of smoothing parameter selectors in density and intensity estimation. J. Am. Statist. Assoc. 83(403):793–800, 1988.CrossRefMATHMathSciNet
112.
123.
go back to reference Gretton, A., Herbrich R., Smola A., Bousquet O., Schölkopf B., Kernel Methods for Measuring Independence,” J. Mach. Learn. Res., 6:2075–2129, 2005.MATHMathSciNet Gretton, A., Herbrich R., Smola A., Bousquet O., Schölkopf B., Kernel Methods for Measuring Independence,” J. Mach. Learn. Res., 6:2075–2129, 2005.MATHMathSciNet
126.
go back to reference Gyorfi L., van der Meulen E., On nonparametric estimation of entropy functionals, in Nonparametric Functional Estimation and Related Topics, (G. Roussas, Ed.), Kluwer Academic, Amsterdam, 1990, pp. 81–95. Gyorfi L., van der Meulen E., On nonparametric estimation of entropy functionals, in Nonparametric Functional Estimation and Related Topics, (G. Roussas, Ed.), Kluwer Academic, Amsterdam, 1990, pp. 81–95.
164.
go back to reference Jenssen R., Erdogmus D., Principe J., Eltoft T., Some equivalence between kernel and information theoretic methods, in J. VLSI Signal Process., 45:49–65, 2006.CrossRef Jenssen R., Erdogmus D., Principe J., Eltoft T., Some equivalence between kernel and information theoretic methods, in J. VLSI Signal Process., 45:49–65, 2006.CrossRef
194.
go back to reference LeCun Y., Jackel L., Bottou L., Brunot A., Cortes C., Denker J., Drucker H., Guyon I., Muller U., Sackinger E., Simard P., Vapnik V., Learning algorithms for classification: A comparison on handwritten digit reconstruction. Neural Netw., pp. 261–276, 1995. LeCun Y., Jackel L., Bottou L., Brunot A., Cortes C., Denker J., Drucker H., Guyon I., Muller U., Sackinger E., Simard P., Vapnik V., Learning algorithms for classification: A comparison on handwritten digit reconstruction. Neural Netw., pp. 261–276, 1995.
217.
go back to reference Mercer J., Functions of positive and negative type, and their connection with the theory of integral equations, Philosoph. Trans. Roy. Soc. Lond., 209:415–446, 1909.CrossRefMATH Mercer J., Functions of positive and negative type, and their connection with the theory of integral equations, Philosoph. Trans. Roy. Soc. Lond., 209:415–446, 1909.CrossRefMATH
219.
go back to reference Mika S., Ratsch G., Weston J., Scholkopf B., Muller K., Fisher discriminant analysis with kernels. In Proceedings of IEEE International Workshop on Neural Networks for Signal Processing, pages 41–48, Madison, USA, August 23–25, 1999. Mika S., Ratsch G., Weston J., Scholkopf B., Muller K., Fisher discriminant analysis with kernels. In Proceedings of IEEE International Workshop on Neural Networks for Signal Processing, pages 41–48, Madison, USA, August 23–25, 1999.
222.
go back to reference Moore E., On properly positive Hermitian matrices, Bull. Amer. Math. Soc., 23(59):66–67, 1916.MATH Moore E., On properly positive Hermitian matrices, Bull. Amer. Math. Soc., 23(59):66–67, 1916.MATH
225.
go back to reference Muller K., Smola A., Ratsch G., Scholkopf B., Kohlmorgen J., Vapnik V., Predicting time series with support vector machines. In Proceedings of International Conference on Artificial Neural Networks, Lecture Notes in Computer Science, volume 1327, pages 999–1004, Springer-Verlag, Berlin, 1997. Muller K., Smola A., Ratsch G., Scholkopf B., Kohlmorgen J., Vapnik V., Predicting time series with support vector machines. In Proceedings of International Conference on Artificial Neural Networks, Lecture Notes in Computer Science, volume 1327, pages 999–1004, Springer-Verlag, Berlin, 1997.
226.
go back to reference Muller K., Mika S., Ratsch G., Tsuda K., Scholkopf B., An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw., 12(2):181–201, 2001.CrossRef Muller K., Mika S., Ratsch G., Tsuda K., Scholkopf B., An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw., 12(2):181–201, 2001.CrossRef
234.
go back to reference Paiva, A.R.C., Park, I., Principe, J.C. A reproducing kernel Hilbert space framework for spike train signal processing. Neural Comput., 21(2):424–449, 2009.CrossRefMATHMathSciNet Paiva, A.R.C., Park, I., Principe, J.C. A reproducing kernel Hilbert space framework for spike train signal processing. Neural Comput., 21(2):424–449, 2009.CrossRefMATHMathSciNet
238.
go back to reference Parzen E., Statistical inference on time series by Hilbert space methods, Tech. Report 23, Stat. Dept., Stanford Univ., 1959. Parzen E., Statistical inference on time series by Hilbert space methods, Tech. Report 23, Stat. Dept., Stanford Univ., 1959.
257.
287.
go back to reference Schölkopf B., Smola A., Muller K., Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10:1299–1319, 1998.CrossRef Schölkopf B., Smola A., Muller K., Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10:1299–1319, 1998.CrossRef
288.
go back to reference Schölkopf, B., Burges, C.J.C., Smola, A.J. (Eds.), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 1999. Schölkopf, B., Burges, C.J.C., Smola, A.J. (Eds.), Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 1999.
289.
go back to reference Schölkopf B. and Smola A., Learning with Kernels. MIT Press, Cambridge, MA, 2002 Schölkopf B. and Smola A., Learning with Kernels. MIT Press, Cambridge, MA, 2002
290.
go back to reference Schrauwen, B., Campenhout, J.V., Linking non-binned spike train kernels to several existing spike train distances. Neurocomp. 70(7–8), 1247–1253 (2007).CrossRef Schrauwen, B., Campenhout, J.V., Linking non-binned spike train kernels to several existing spike train distances. Neurocomp. 70(7–8), 1247–1253 (2007).CrossRef
294.
go back to reference Shawe-Taylor J. Cristianini N., Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK, 2004.CrossRef Shawe-Taylor J. Cristianini N., Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK, 2004.CrossRef
307.
go back to reference Snyder, D.L., Random Point Process in Time and Space. John Wiley & Sons, New York, 1975. Snyder, D.L., Random Point Process in Time and Space. John Wiley & Sons, New York, 1975.
323.
341.
go back to reference Xu J., Pokharel P., Jeong K., Principe J., An explicit construction of a reproducing Gaussian kernel Hilbert space, Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing, Toulouse, France, 2005. Xu J., Pokharel P., Jeong K., Principe J., An explicit construction of a reproducing Gaussian kernel Hilbert space, Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing, Toulouse, France, 2005.
350.
go back to reference Zien A., Ratsch G., Mika S., Schölkopf B., Lengauer T., Muller K., Engineering support vector machine kernels that recognize translation invariant sites in DNA. Bioinformatics, 16:906–914, 2000.CrossRef Zien A., Ratsch G., Mika S., Schölkopf B., Lengauer T., Muller K., Engineering support vector machine kernels that recognize translation invariant sites in DNA. Bioinformatics, 16:906–914, 2000.CrossRef
Metadata
Title
A Reproducing Kernel Hilbert Space Framework for ITL
Authors
Jianwu Xu
Robert Jenssen
Antonio Paiva
Il Park
Copyright Year
2010
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-1570-2_9

Premium Partner