Skip to main content
Top

2024 | OriginalPaper | Chapter

A Review of Challenges and Solutions in Ledge Control and Measurement in Aluminium Electrolysis Cell

Authors : Bazoumana Sanogo, Lukas Dion, Sébastien Gaboury, László Kiss, Thomas Roger, Sébastien Guérard, Jean-François Bilodeau

Published in: Light Metals 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In aluminium electrolysis cell, thermal balance represents a very sensitive aspect of process control and its optimization. This balance is strongly influenced by the side ledge behaviour, making it crucial for cell performance. Despite the existence of numerous studies on ledge, its precise behaviour remains difficult to assess in a timely manner due to the aggressive environment and the limited access to the ledge. The literature reports only limited methodologies to quantify the formation of ledge in the electrolysis cell, and these are generally only representative of a short period. In this article, the challenges associated to ledge measurement and controls are discussed along with the relevant parameters and thermal events. Solutions proposed to manage these limitations are discussed including numerical and physical methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Frank, W.B., et al., Aluminum, in Ullmann's Encyclopedia of Industrial Chemistry. 2009. Frank, W.B., et al., Aluminum, in Ullmann's Encyclopedia of Industrial Chemistry. 2009.
2.
go back to reference Hulse, K.L. and R. Carbon, Anode manufacture: raw materials, formulation and processing parameters. 2000: R & D Carbon Limited. Hulse, K.L. and R. Carbon, Anode manufacture: raw materials, formulation and processing parameters. 2000: R & D Carbon Limited.
3.
go back to reference Grjotheim, K. and H. Kvande, Introduction to aluminium electrolysis : understanding the Hall-Héroult process. 2010, Düsseldorf: Alu Media. Grjotheim, K. and H. Kvande, Introduction to aluminium electrolysis : understanding the Hall-Héroult process. 2010, Düsseldorf: Alu Media.
4.
go back to reference Wong, C.-J., et al., Studies on Power Modulation of Aluminum Smelting Cells Based on a Discretized Mass and Thermal Dynamic Model. Metallurgical and Materials Transactions B, 2023. 54(2): pp. 562–577.CrossRef Wong, C.-J., et al., Studies on Power Modulation of Aluminum Smelting Cells Based on a Discretized Mass and Thermal Dynamic Model. Metallurgical and Materials Transactions B, 2023. 54(2): pp. 562–577.CrossRef
5.
go back to reference Solheim, A., et al. Sideledge in aluminium cells: Further considerations concerning the trench at the metal-bath boundary. in Light Metals 2019. 2019. Springer. Solheim, A., et al. Sideledge in aluminium cells: Further considerations concerning the trench at the metal-bath boundary. in Light Metals 2019. 2019. Springer.
6.
go back to reference Sorlie, M. and H.A. Øye, Cathodes in aluminium electrolysis. 3rd éd. ed. 2010, Düsseldorf, Germany: Aluminium-verlag marketing & kommunikation GmbH. Sorlie, M. and H.A. Øye, Cathodes in aluminium electrolysis. 3rd éd. ed. 2010, Düsseldorf, Germany: Aluminium-verlag marketing & kommunikation GmbH.
7.
go back to reference Jeddi, E., et al., Experimental and numerical investigation of voltage drop in anode assemblies. Light Metals 2013, 2016: pp. 1347–1352. Jeddi, E., et al., Experimental and numerical investigation of voltage drop in anode assemblies. Light Metals 2013, 2016: pp. 1347–1352.
8.
go back to reference Gusberti, V., Modelling the Mass and Energy Balance of Aluminium Reduction Cells, in UNSW Faculty. 2014, The University of New South Wales Sydney: Australia. Gusberti, V., Modelling the Mass and Energy Balance of Aluminium Reduction Cells, in UNSW Faculty. 2014, The University of New South Wales Sydney: Australia.
9.
go back to reference Iffert, M., Aluminium smelting cell control and optimisation. 2007, UNSW, Sydney. Iffert, M., Aluminium smelting cell control and optimisation. 2007, UNSW, Sydney.
10.
go back to reference Pansiot, B., et al. A New Strategy for Transient Heat Transfer Models with Phase Change for the Aluminum Electrolysis Industry. in Paper presented at Light Metals 2023. 2023. Cham: Springer Nature Switzerland. Pansiot, B., et al. A New Strategy for Transient Heat Transfer Models with Phase Change for the Aluminum Electrolysis Industry. in Paper presented at Light Metals 2023. 2023. Cham: Springer Nature Switzerland.
11.
go back to reference Li, C., et al., Energy Balance of the Chinese Aluminum Electrolysis Cell, in Light Metals 2022. 2022, Springer. pp. 432–440.CrossRef Li, C., et al., Energy Balance of the Chinese Aluminum Electrolysis Cell, in Light Metals 2022. 2022, Springer. pp. 432–440.CrossRef
12.
go back to reference Haupin, W.E., Calculating thickness of containing walls frozen from melt. JOM, 1971. 23(7): pp. 41–44.CrossRef Haupin, W.E., Calculating thickness of containing walls frozen from melt. JOM, 1971. 23(7): pp. 41–44.CrossRef
13.
go back to reference Ratvik, A.P., R. Mollaabbasi, and H. Alamdari, Aluminium production process: from Hall–Héroult to modern smelters. ChemTexts, 2022. 8(2): p. 10.CrossRef Ratvik, A.P., R. Mollaabbasi, and H. Alamdari, Aluminium production process: from Hall–Héroult to modern smelters. ChemTexts, 2022. 8(2): p. 10.CrossRef
14.
go back to reference Shamroukh, A.-M.M., et al. Energy saving in Hall–Héroult cell by optimization of anode assembly design. in Light Metals 2020. 2020. Springer. Shamroukh, A.-M.M., et al. Energy saving in Hall–Héroult cell by optimization of anode assembly design. in Light Metals 2020. 2020. Springer.
15.
go back to reference Kiss, L.I., S. Poncsak, and J. Antille, Simulation of the bubble layer in aluminum electrolysis cells. Light Metals, 2005: pp. 559–564. Kiss, L.I., S. Poncsak, and J. Antille, Simulation of the bubble layer in aluminum electrolysis cells. Light Metals, 2005: pp. 559–564.
16.
go back to reference Sides, P.J. and G.A. Prentice, The effect of electrode shape on the cell voltage of hall cells—II. Inert anodes. Electrochimica acta, 1988. 33(8): pp. 1043–1046.CrossRef Sides, P.J. and G.A. Prentice, The effect of electrode shape on the cell voltage of hall cells—II. Inert anodes. Electrochimica acta, 1988. 33(8): pp. 1043–1046.CrossRef
17.
go back to reference Tremblay, S.-O., Étude conceptuelle et développement d'un nouvel assemblage anodique. 2019. Tremblay, S.-O., Étude conceptuelle et développement d'un nouvel assemblage anodique. 2019.
18.
go back to reference Welch, B.J. The Development of Anode Shape, Size and Assembly Designs—Past, Present and Future Needs. in Light Metals 2020. 2020. Springer. Welch, B.J. The Development of Anode Shape, Size and Assembly Designs—Past, Present and Future Needs. in Light Metals 2020. 2020. Springer.
19.
go back to reference Arkhipov, A., et al. Review of thermal and electrical modelling and validation approaches for anode design in aluminium reduction cells. in Proceedings of 36th International ICSOBA Conference. 2018. Arkhipov, A., et al. Review of thermal and electrical modelling and validation approaches for anode design in aluminium reduction cells. in Proceedings of 36th International ICSOBA Conference. 2018.
20.
go back to reference Li, X., Y. Liu, and T.-a. Zhang, A comprehensive review of aluminium electrolysis and the waste generated by it. Waste Management & Research, 2023: p. 0734242X231164321. Li, X., Y. Liu, and T.-a. Zhang, A comprehensive review of aluminium electrolysis and the waste generated by it. Waste Management & Research, 2023: p. 0734242X231164321.
21.
go back to reference Allard, F., Modélisation numérique, caractérisation et validation expérimentale du transfert thermique au-dessus de cellules d'électrolyse d’aluminium, in Département de génie chimique et biotechnologique. 2018, Université de Sherbrooke. Allard, F., Modélisation numérique, caractérisation et validation expérimentale du transfert thermique au-dessus de cellules d'électrolyse d’aluminium, in Département de génie chimique et biotechnologique. 2018, Université de Sherbrooke.
22.
go back to reference Allard, F., et al., The Impact of the Cavity on the Top Heat Losses in Aluminum Electrolysis Cells. Light Metals 2016, 2016: pp. 289–294. Allard, F., et al., The Impact of the Cavity on the Top Heat Losses in Aluminum Electrolysis Cells. Light Metals 2016, 2016: pp. 289–294.
23.
go back to reference Kiss, L. and V. Dassylva-Raymond. Freeze thickness in the aluminum electrolysis cells. in LIGHT METALS-WARRENDALE-PROCEEDINGS-. 2008. TMS. Kiss, L. and V. Dassylva-Raymond. Freeze thickness in the aluminum electrolysis cells. in LIGHT METALS-WARRENDALE-PROCEEDINGS-. 2008. TMS.
24.
go back to reference Solheim, A., Towards a Proper Understanding of Sideledge Facing the Metal in Aluminium Cells? Light Metals, 2006. 2006: pp. 439–443. Solheim, A., Towards a Proper Understanding of Sideledge Facing the Metal in Aluminium Cells? Light Metals, 2006. 2006: pp. 439–443.
25.
go back to reference Solheim, A., H. Gudbrandsen, and S. Rolseth, Sideledge in aluminium cells: The trench at the metal-bath boundary. Light Metals, 2009: p. 411. Solheim, A., H. Gudbrandsen, and S. Rolseth, Sideledge in aluminium cells: The trench at the metal-bath boundary. Light Metals, 2009: p. 411.
26.
go back to reference Solheim, A., Some aspects of heat transfer between bath and sideledge in aluminium reduction cells. Light metals 2011, 2016: pp. 381–386. Solheim, A., Some aspects of heat transfer between bath and sideledge in aluminium reduction cells. Light metals 2011, 2016: pp. 381–386.
27.
go back to reference Poncsák, S., et al., Structural Characterisation and Thermophysical Properties of the Side Ledge in Hall‐Héroult Cells. Light Metals 2014, 2014: pp. 585–589. Poncsák, S., et al., Structural Characterisation and Thermophysical Properties of the Side Ledge in Hall‐Héroult Cells. Light Metals 2014, 2014: pp. 585–589.
28.
go back to reference Poncsák, S., et al., Study of the structure and thermophysical properties of the side ledge in Hall-Heroult cells operating with modified bath composition. Light Metals 2015, 2016: pp. 655–659. Poncsák, S., et al., Study of the structure and thermophysical properties of the side ledge in Hall-Heroult cells operating with modified bath composition. Light Metals 2015, 2016: pp. 655–659.
29.
go back to reference Poncsák, S., et al., Impact of the heat flux on solidification of cryolite based bath. Light Metals 2016, 2016: pp. 359–364. Poncsák, S., et al., Impact of the heat flux on solidification of cryolite based bath. Light Metals 2016, 2016: pp. 359–364.
30.
go back to reference Liu, J., et al., Investigation of the Ledge Structure in Aluminum Smelting Cells. JOM, 2020. 72(1): pp. 253–262.CrossRef Liu, J., et al., Investigation of the Ledge Structure in Aluminum Smelting Cells. JOM, 2020. 72(1): pp. 253–262.CrossRef
31.
go back to reference Wang, L., et al., Numerical Simulations and Thermal Diagnostic of Ledge Formation in Hall–Heroult Aluminum Electrolysis Cell with a Solidification Front at the Cryolite-Metal Baths Interface for Reduction of Heat Losses. Journal of Sustainable Metallurgy, 2023. Wang, L., et al., Numerical Simulations and Thermal Diagnostic of Ledge Formation in Hall–Heroult Aluminum Electrolysis Cell with a Solidification Front at the Cryolite-Metal Baths Interface for Reduction of Heat Losses. Journal of Sustainable Metallurgy, 2023.
32.
go back to reference Wong, C.J., Dynamic mass and heat balance model of hall-héroult cells : a discretised approach, in School of chemical engineering - faculty of engineering. 2022, University of New South Wales. Wong, C.J., Dynamic mass and heat balance model of hall-héroult cells : a discretised approach, in School of chemical engineering - faculty of engineering. 2022, University of New South Wales.
33.
go back to reference Ivanova, A., et al., Experimental studies of the dynamic formation of the side ledge in an aluminum electrolysis cell. Russian Metallurgy (Metally), 2020. 2020: pp. 133–137.CrossRef Ivanova, A., et al., Experimental studies of the dynamic formation of the side ledge in an aluminum electrolysis cell. Russian Metallurgy (Metally), 2020. 2020: pp. 133–137.CrossRef
34.
go back to reference Ran, L., et al., Improved CFD Modeling of the Whole-Cell Side Ledge Behavior in Aluminum Electrolysis Cell. Metallurgical and Materials Transactions, 2023. Ran, L., et al., Improved CFD Modeling of the Whole-Cell Side Ledge Behavior in Aluminum Electrolysis Cell. Metallurgical and Materials Transactions, 2023.
35.
go back to reference Ugron, Á., et al., Non-Intrusive Freeze Layer Detection Method in an Aluminum Reduction Cell, in Light Metals 2015. 2016, Cham : Springer International Publishing : Springer. pp. 571–576. Ugron, Á., et al., Non-Intrusive Freeze Layer Detection Method in an Aluminum Reduction Cell, in Light Metals 2015. 2016, Cham : Springer International Publishing : Springer. pp. 571–576.
36.
go back to reference Ahmed, A., Manipulation of Heat Dissipation from Sides of Electrolytic Cells. 2015. Ahmed, A., Manipulation of Heat Dissipation from Sides of Electrolytic Cells. 2015.
37.
go back to reference Welch, B.J. and J. Keniry, Advancing the hall heroult electrolytic process. Light Metals, 2000. 2000: pp. 17–25. Welch, B.J. and J. Keniry, Advancing the hall heroult electrolytic process. Light Metals, 2000. 2000: pp. 17–25.
38.
go back to reference Ivanova, A.M., et al., Formation of Side Ledge and Bottom Ledge in an Aluminum Electrolyzer. Russian Journal of Non-Ferrous Metals, 2019. 60(6): pp. 624–631.CrossRef Ivanova, A.M., et al., Formation of Side Ledge and Bottom Ledge in an Aluminum Electrolyzer. Russian Journal of Non-Ferrous Metals, 2019. 60(6): pp. 624–631.CrossRef
39.
go back to reference Zhang, H., et al. Study on 3D full cell ledge shape calculation and optimal design criteria by coupled thermo-flow model. in Light Metals 2018. 2018. Springer. Zhang, H., et al. Study on 3D full cell ledge shape calculation and optimal design criteria by coupled thermo-flow model. in Light Metals 2018. 2018. Springer.
40.
go back to reference Wei, C.C., et al. Modelling of dynamic ledge heat transfer. in Proceedings of the 1997 TMS Annual Meeting. 1997. Wei, C.C., et al. Modelling of dynamic ledge heat transfer. in Proceedings of the 1997 TMS Annual Meeting. 1997.
41.
go back to reference LeBreux, M., et al., An on-line estimation tool for predicting the time-varying ledge profile inside aluminum electrolysis cells. Numerical Heat Transfer, Part A: Applications, 2020. 77(2): pp. 134–161.CrossRef LeBreux, M., et al., An on-line estimation tool for predicting the time-varying ledge profile inside aluminum electrolysis cells. Numerical Heat Transfer, Part A: Applications, 2020. 77(2): pp. 134–161.CrossRef
42.
go back to reference Haugland, E., et al. Effects of ambient temperature and ventilation on shell temperature, heat balance and side ledge of an alumina reduction cell. in LIGHT METALS-WARRENDALE-PROCEEDINGS-. 2003. TMS. Haugland, E., et al. Effects of ambient temperature and ventilation on shell temperature, heat balance and side ledge of an alumina reduction cell. in LIGHT METALS-WARRENDALE-PROCEEDINGS-. 2003. TMS.
43.
go back to reference Sen, Z., et al., Controlled Ledge Profile of Aluminum Smelting Cell Using Sidewalls Heat Exchangers Supplied with Molten Salt. Journal of Sustainable Metallurgy, 2023. Sen, Z., et al., Controlled Ledge Profile of Aluminum Smelting Cell Using Sidewalls Heat Exchangers Supplied with Molten Salt. Journal of Sustainable Metallurgy, 2023.
44.
go back to reference Severo, D.S. and V. Gusberti, A Modelling Approach to Estimate Bath and Metal Heat Transfer Coefficients, in Essential Readings in Light Metals: Volume 2 Aluminum Reduction Technology, G. Bearne, M. Dupuis, and G. Tarcy, Editors. 2016, Springer International Publishing: Cham. pp. 309–314.CrossRef Severo, D.S. and V. Gusberti, A Modelling Approach to Estimate Bath and Metal Heat Transfer Coefficients, in Essential Readings in Light Metals: Volume 2 Aluminum Reduction Technology, G. Bearne, M. Dupuis, and G. Tarcy, Editors. 2016, Springer International Publishing: Cham. pp. 309–314.CrossRef
45.
go back to reference Tørklep, K. and T. Nordboe, Some applications of the Elkem position probe. LIGHT METALS-WARRENDALE-, 1994: pp. 449–449. Tørklep, K. and T. Nordboe, Some applications of the Elkem position probe. LIGHT METALS-WARRENDALE-, 1994: pp. 449–449.
46.
go back to reference Arita, Y., N. Urata, and H. Ikeuchi, Estimation of Frozen Bath Shape in an Aluminum Reduction Cell by Computer Simulation, in Essential Readings in Light Metals: Volume 2 Aluminum Reduction Technology, G. Bearne, M. Dupuis, and G. Tarcy, Editors. 2016, Springer International Publishing: Cham. pp. 279–285.CrossRef Arita, Y., N. Urata, and H. Ikeuchi, Estimation of Frozen Bath Shape in an Aluminum Reduction Cell by Computer Simulation, in Essential Readings in Light Metals: Volume 2 Aluminum Reduction Technology, G. Bearne, M. Dupuis, and G. Tarcy, Editors. 2016, Springer International Publishing: Cham. pp. 279–285.CrossRef
47.
go back to reference Dupuis, M. and I. Tabsh, Thermo-electric Analysis of the Grande-Baie Aluminum reduction cell. LIGHT METALS-WARRENDALE-, 1994: pp. 339–339. Dupuis, M. and I. Tabsh, Thermo-electric Analysis of the Grande-Baie Aluminum reduction cell. LIGHT METALS-WARRENDALE-, 1994: pp. 339–339.
48.
go back to reference Boily, P., Application des capteurs thermiques implantés pour la détection du profil de gelée dans la cuve d'électrolyse. 2001, Université du Québec à Chicoutimi: Chicoutimi. Boily, P., Application des capteurs thermiques implantés pour la détection du profil de gelée dans la cuve d'électrolyse. 2001, Université du Québec à Chicoutimi: Chicoutimi.
49.
go back to reference Boily, P., et al., Sensitivity analysis of the thermal detection of the freeze profile in an aluminium reduction cell. Light Metals, 2001: pp. 1–7. Boily, P., et al., Sensitivity analysis of the thermal detection of the freeze profile in an aluminium reduction cell. Light Metals, 2001: pp. 1–7.
50.
go back to reference Lalancette, F., et al., Dimensional reduction of a 3D thermoelectric model to create a reliable and time-efficient 2D model representing an aluminum electrolysis cell. International Journal of Heat and Mass Transfer, 2023. 202: p. 123777.CrossRef Lalancette, F., et al., Dimensional reduction of a 3D thermoelectric model to create a reliable and time-efficient 2D model representing an aluminum electrolysis cell. International Journal of Heat and Mass Transfer, 2023. 202: p. 123777.CrossRef
51.
go back to reference Solheim, A., N.-H. Giskeødegård, and N.J. Holt, Sideledge facing metal in aluminium electrolysis cells: Freezing and melting in the presence of a bath film. Light Metals 2016, 2016: pp. 333–338. Solheim, A., N.-H. Giskeødegård, and N.J. Holt, Sideledge facing metal in aluminium electrolysis cells: Freezing and melting in the presence of a bath film. Light Metals 2016, 2016: pp. 333–338.
52.
go back to reference Guérard, S., Modelling and Design of a Forced Convection Network for Hall-Héroult Cells. 2016. Guérard, S., Modelling and Design of a Forced Convection Network for Hall-Héroult Cells. 2016.
53.
go back to reference Sun, Y., et al., A dynamic spatial distributed information clustering method for aluminum electrolysis cell. Engineering Applications of Artificial Intelligence, 2023. 126: p. 106793.CrossRef Sun, Y., et al., A dynamic spatial distributed information clustering method for aluminum electrolysis cell. Engineering Applications of Artificial Intelligence, 2023. 126: p. 106793.CrossRef
Metadata
Title
A Review of Challenges and Solutions in Ledge Control and Measurement in Aluminium Electrolysis Cell
Authors
Bazoumana Sanogo
Lukas Dion
Sébastien Gaboury
László Kiss
Thomas Roger
Sébastien Guérard
Jean-François Bilodeau
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50308-5_74

Premium Partners