Skip to main content
Top
Published in: Electrical Engineering 3/2017

21-10-2016 | Original Paper

A robust continuous conduction mode control strategy of switched reluctance generator for wind power plant applications

Authors: Martin P. Ćalasan, Vladan P. Vujičić

Published in: Electrical Engineering | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Control of a switched reluctance machine (SRM) is relatively complex due to its highly nonlinear characteristics. The control parameters, such as turn-on angle, turn-off angle, and the reference current, have to be precisely changed with speed and the desired power or torque level to provide optimal performance. This paper presents an innovative, simple, and effective control strategy of SRM, operating in continuous-conduction mode (CCM), for a wind power plant application. First, the procedure for determination of the optimal control parameters as a function of rotor speed that provides maximal output power of SRM is described. Thereafter, the control angles versus speed dependences are linearized to be used for control of SRM in the wind turbine generator system (WTGS). Output power of WTGS is simply controlled by controlling the DC supply voltage of SRM. In the simulations performed to study the proposed control strategy, a realistic wind profile is used. Simulations results provided for the WTGS with and without pitch control confirm that the proposed control strategy ensures high efficiency of SRM, system stability, and fast maximal power point tracking under any operating conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Trudnowski DJ, Gentile A, Khan JM, Petritz EM (2004) Fixed-speed wind-generator and wind-park modeling for transient stability studies. IEEE Trans Power Syst 19:1911–1917CrossRef Trudnowski DJ, Gentile A, Khan JM, Petritz EM (2004) Fixed-speed wind-generator and wind-park modeling for transient stability studies. IEEE Trans Power Syst 19:1911–1917CrossRef
2.
go back to reference Altun H, Sünter S (2013) Modeling, simulation and control of wind turbine driven doubly-fed induction generator with matrix converter on the rotor side. Electr Eng 95:157–170CrossRef Altun H, Sünter S (2013) Modeling, simulation and control of wind turbine driven doubly-fed induction generator with matrix converter on the rotor side. Electr Eng 95:157–170CrossRef
3.
go back to reference Muljadi E, Butterfield CP, Parsons B, Ellis A (2007) Effect of variable speed wind turbine generator on stability of a weak grid. IEEE Trans Energy Conv 22:29–36CrossRef Muljadi E, Butterfield CP, Parsons B, Ellis A (2007) Effect of variable speed wind turbine generator on stability of a weak grid. IEEE Trans Energy Conv 22:29–36CrossRef
4.
go back to reference Kima HW, Kimb SS, Koa HS (2010) Modeling and control of PMSG-based variable-speed wind turbine. Elsevier Elect Power Syst Res 80:46–52CrossRef Kima HW, Kimb SS, Koa HS (2010) Modeling and control of PMSG-based variable-speed wind turbine. Elsevier Elect Power Syst Res 80:46–52CrossRef
5.
go back to reference Kuschke M, Strunz K (2014) Energy-efficient dynamic drive control for wind power conversion with PMSG: modeling and application of transfer function analysis. IEEE J Emerg Sel Top in Power Electr 2:35–46CrossRef Kuschke M, Strunz K (2014) Energy-efficient dynamic drive control for wind power conversion with PMSG: modeling and application of transfer function analysis. IEEE J Emerg Sel Top in Power Electr 2:35–46CrossRef
6.
go back to reference Morimoto S, Nakamura T, Takeda Y (2003) Power maximization control of variable-speed wind generation system using permanent magnet synchronous generator. Electr Eng Japan 123:1573–1579 Morimoto S, Nakamura T, Takeda Y (2003) Power maximization control of variable-speed wind generation system using permanent magnet synchronous generator. Electr Eng Japan 123:1573–1579
7.
go back to reference C’ardenas R, Pena R, Perez M (2005) Control of a switched reluctance generator for variable-speed wind energy applications. IEEE Trans Energy Conv 20:781–791CrossRef C’ardenas R, Pena R, Perez M (2005) Control of a switched reluctance generator for variable-speed wind energy applications. IEEE Trans Energy Conv 20:781–791CrossRef
8.
go back to reference Echenique E, Dixon J, Cárdenas R, Peña R (2009) Sensorless control for a switched reluctance wind generator, based on current slopes and neural networks. IEEE Trans Ind Electron 56:817–825CrossRef Echenique E, Dixon J, Cárdenas R, Peña R (2009) Sensorless control for a switched reluctance wind generator, based on current slopes and neural networks. IEEE Trans Ind Electron 56:817–825CrossRef
9.
go back to reference Hasanien HM, Muyeen SM (2012) Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller. Elsevier Elect Power Syst Res 84:206–213CrossRef Hasanien HM, Muyeen SM (2012) Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller. Elsevier Elect Power Syst Res 84:206–213CrossRef
10.
go back to reference Jordison I, Piron M G A, Mayes P R et al (2004) Control of switched reluctance machines. Eur Patent EP 1 385 263 A2 Jordison I, Piron M G A, Mayes P R et al (2004) Control of switched reluctance machines. Eur Patent EP 1 385 263 A2
11.
go back to reference Schofield N, Long SA, Howe D, McClelland M (2009) Design of a switched reluctance machine for extended speed operation. IEEE Trans Ind Appl 45:116–122CrossRef Schofield N, Long SA, Howe D, McClelland M (2009) Design of a switched reluctance machine for extended speed operation. IEEE Trans Ind Appl 45:116–122CrossRef
12.
go back to reference Hannoun H, Hilairet M, Marchand C (2010) Design of an SRM speed control strategy for a wide range of operating speeds. IEEE Trans Ind Electron 57:2911–2921CrossRef Hannoun H, Hilairet M, Marchand C (2010) Design of an SRM speed control strategy for a wide range of operating speeds. IEEE Trans Ind Electron 57:2911–2921CrossRef
13.
go back to reference Hannoun H, Hilairet M, Marchand C (2011) Experimental validation of a switched reluctance machine operating in continuous–conduction mode. IEEE Trans Veh Tech 60:1453–1460CrossRef Hannoun H, Hilairet M, Marchand C (2011) Experimental validation of a switched reluctance machine operating in continuous–conduction mode. IEEE Trans Veh Tech 60:1453–1460CrossRef
14.
go back to reference Chiba A, Takeno M, Hoshi N et al (2012) Consideration of number of series turns in switched-reluctance traction motor competitive to HEV IPMSM. IEEE Trans Ind Appl 48:2333–2340CrossRef Chiba A, Takeno M, Hoshi N et al (2012) Consideration of number of series turns in switched-reluctance traction motor competitive to HEV IPMSM. IEEE Trans Ind Appl 48:2333–2340CrossRef
15.
go back to reference Rekik M, Besbes M, Marchand C et al (2007) Improvement in the field-weakening performance of switched reluctance machine with continuous mode. IET Electr Power Appl 1:785–792CrossRef Rekik M, Besbes M, Marchand C et al (2007) Improvement in the field-weakening performance of switched reluctance machine with continuous mode. IET Electr Power Appl 1:785–792CrossRef
16.
go back to reference Rekik M, Besbes M, Marchand C et al (2008) High-speed-range enhancement of switched reluctance motor with continuous mode for automotive applications. Eur Trans Elec Power 18:684–693CrossRef Rekik M, Besbes M, Marchand C et al (2008) High-speed-range enhancement of switched reluctance motor with continuous mode for automotive applications. Eur Trans Elec Power 18:684–693CrossRef
17.
go back to reference Grbo Z, Vukosavic S (2007) Cost-optimized switched reluctance motor drive with bipolar currents. Electr Eng 89:183–191CrossRef Grbo Z, Vukosavic S (2007) Cost-optimized switched reluctance motor drive with bipolar currents. Electr Eng 89:183–191CrossRef
18.
go back to reference Miller TJE (1993) Switched reluctance motors and their control. Magna Physics Publishing/Clarendon Press, Oxford Miller TJE (1993) Switched reluctance motors and their control. Magna Physics Publishing/Clarendon Press, Oxford
19.
go back to reference Faiz J, Zadeh KM (2005) Design of switched reluctance machine for starter/generator of hybrid electric vehicle. Elsevier Elect Power Syst Res 75:153–160 Faiz J, Zadeh KM (2005) Design of switched reluctance machine for starter/generator of hybrid electric vehicle. Elsevier Elect Power Syst Res 75:153–160
20.
go back to reference Rahman KM, Fahimi B, Suresh G, Rajarathnam AV, Ehsani M (2000) Advantages of switched reluctance motor applications to EV and HEV: design and control issues. IEEE Trans Ind Appl 36:111–121CrossRef Rahman KM, Fahimi B, Suresh G, Rajarathnam AV, Ehsani M (2000) Advantages of switched reluctance motor applications to EV and HEV: design and control issues. IEEE Trans Ind Appl 36:111–121CrossRef
21.
go back to reference Pan J, Zou Y, Cao G (2013) Investigation of a low-power, double-sided switched reluctance generator for wave energy conversion. IET Renew Power Gen 7:98–109CrossRef Pan J, Zou Y, Cao G (2013) Investigation of a low-power, double-sided switched reluctance generator for wave energy conversion. IET Renew Power Gen 7:98–109CrossRef
22.
go back to reference Faiz J, Finch JW (1993) Aspects of design optimization for switched reluctance motors. IEEE Trans Energy Conv 8:704–713CrossRef Faiz J, Finch JW (1993) Aspects of design optimization for switched reluctance motors. IEEE Trans Energy Conv 8:704–713CrossRef
23.
go back to reference Vukosavić S, Stefanović VR (1991) SRM inverter topologies: a comparative evaluation. IEEE Trans Ind Appl 27:1034–1047CrossRef Vukosavić S, Stefanović VR (1991) SRM inverter topologies: a comparative evaluation. IEEE Trans Ind Appl 27:1034–1047CrossRef
24.
go back to reference Vujicic VP, Vukosavic SN, Jovanovic MB (2006) Asymmetrical switched reluctance motor for a wide constant power range. IEEE Trans Energy Conv 21:44–51 Vujicic VP, Vukosavic SN, Jovanovic MB (2006) Asymmetrical switched reluctance motor for a wide constant power range. IEEE Trans Energy Conv 21:44–51
25.
go back to reference Vujičić VP, Vukosavić SN (2000) A simple nonlinear model of the switched reluctance motor. IEEE Trans Energy Conv 15:395–400CrossRef Vujičić VP, Vukosavić SN (2000) A simple nonlinear model of the switched reluctance motor. IEEE Trans Energy Conv 15:395–400CrossRef
26.
go back to reference Xia Y, Ahmed KH, Williams BW (2013) Wind turbine power coefficient analysis of a new maximum power point tracking technique. IEEE Trans Ind Electron 60:1122–1132CrossRef Xia Y, Ahmed KH, Williams BW (2013) Wind turbine power coefficient analysis of a new maximum power point tracking technique. IEEE Trans Ind Electron 60:1122–1132CrossRef
27.
go back to reference Slootweg JG, Polinder H, Kling WL (2003) Representing wind turbine electrical generating systems in fundamental frequency simulations. IEEE Trans Energy Conv 18:516–524CrossRef Slootweg JG, Polinder H, Kling WL (2003) Representing wind turbine electrical generating systems in fundamental frequency simulations. IEEE Trans Energy Conv 18:516–524CrossRef
28.
go back to reference Segaran D, Holmes DG, McGrath BP (2013) Enhanced load step response for a bidirectional DC–DC converter. IEEE Trans Power Elec 28:371–379CrossRef Segaran D, Holmes DG, McGrath BP (2013) Enhanced load step response for a bidirectional DC–DC converter. IEEE Trans Power Elec 28:371–379CrossRef
29.
go back to reference Visinka R (2002) Phase resistance estimation for sensorless control of switched reluctance motors. In: IEEE 2002 28th annual conference of the industrial electronics society—IECON, vol 2, pp 1044–1049. doi:10.1109/IECON.2002.1185416 Visinka R (2002) Phase resistance estimation for sensorless control of switched reluctance motors. In: IEEE 2002 28th annual conference of the industrial electronics society—IECON, vol 2, pp 1044–1049. doi:10.​1109/​IECON.​2002.​1185416
30.
go back to reference Nichita C, Luca D, Dakyo B, Ceanga E (2002) Large band simulation of the wind speed for real time wind turbine simulators. IEEE Trans Energy Conv 17:523–529CrossRef Nichita C, Luca D, Dakyo B, Ceanga E (2002) Large band simulation of the wind speed for real time wind turbine simulators. IEEE Trans Energy Conv 17:523–529CrossRef
31.
go back to reference Polinder H, Frank FA, Vilder GJ, Tavneret PJ (2006) Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans Energy Conv 21:725–733CrossRef Polinder H, Frank FA, Vilder GJ, Tavneret PJ (2006) Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans Energy Conv 21:725–733CrossRef
Metadata
Title
A robust continuous conduction mode control strategy of switched reluctance generator for wind power plant applications
Authors
Martin P. Ćalasan
Vladan P. Vujičić
Publication date
21-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 3/2017
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-016-0459-1

Other articles of this Issue 3/2017

Electrical Engineering 3/2017 Go to the issue