Skip to main content
Top

2020 | OriginalPaper | Chapter

A Simple and Novel Method to Predict the Hospital Energy Use Based on Machine Learning: A Case Study in Norway

Authors : Kai Xue, Yiyu Ding, Zhirong Yang, Natasa Nord, Mael Roger Albert Barillec, Hans Martin Mathisen, Meng Liu, Tor Emil Giske, Liv Inger Stenstad, Guangyu Cao

Published in: Neural Information Processing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hospitals are one of the most energy-consuming commercial buildings in many countries as a highly complex organization because of a continuous energy utilization and great variability of usage characteristic. With the development of machine learning techniques, it can offer opportunities for predicting the energy consumptions in hospital. With a case hospital building in Norway, through analyzing the characteristic of this building, this paper focused on the prediction of energy consumption through machine learning methods (ML), based on the historical weather data and monitored energy use data within the last four consecutive years. A deep framework of machine learning was proposed in six steps: including data collecting, preprocessing, splitting, fitting, optimizing and estimating. It results that, in Norwegian hospital, Electricity was the most highly demand in main building by consuming 55% of total energy use, higher than district heating and cooling. By means of optimizing the hyper-parameters, this paper selected the specific parameters of model to predict the electricity with high accuracy. It concludes that Random forest and AdaBoost method were much better than decision tree and bagging, especially in predicting the lower energy consumption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ürge-Vorsatz, D., Cabeza, L.F., Serrano, S., Barreneche, C., Petrichenko, K.: Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 41, 85–98 (2015)CrossRef Ürge-Vorsatz, D., Cabeza, L.F., Serrano, S., Barreneche, C., Petrichenko, K.: Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 41, 85–98 (2015)CrossRef
2.
go back to reference Bagnasco, A., Fresi, F., Saviozzi, M., Silvestro, F., Vinci, A.: Electrical consumption forecasting in hospital facilities: an application case. Energy Building 103, 261–270 (2015)CrossRef Bagnasco, A., Fresi, F., Saviozzi, M., Silvestro, F., Vinci, A.: Electrical consumption forecasting in hospital facilities: an application case. Energy Building 103, 261–270 (2015)CrossRef
3.
go back to reference González, A.G., Sanz-Calcedo, J., Salgado, D.: Evaluation of energy consumption in german oshpitals: benchmarking in the public sector. Energies 11, 2279 (2018)CrossRef González, A.G., Sanz-Calcedo, J., Salgado, D.: Evaluation of energy consumption in german oshpitals: benchmarking in the public sector. Energies 11, 2279 (2018)CrossRef
4.
go back to reference Dobosi, I., Tanasa, C., Kaba, N.-E., Retezan, A., Mihaila, D.: Building energy modelling for the energy performance analysis of a hospital building in various locations. E3S Web of Conferences 111, p. 06073 (2019) Dobosi, I., Tanasa, C., Kaba, N.-E., Retezan, A., Mihaila, D.: Building energy modelling for the energy performance analysis of a hospital building in various locations. E3S Web of Conferences 111, p. 06073 (2019)
5.
go back to reference Rohde, T., Martinez, R.: Equipment and energy usage in a large teaching hospital in norway. J. Healthc. Eng. 6, 419–434 (2015)CrossRef Rohde, T., Martinez, R.: Equipment and energy usage in a large teaching hospital in norway. J. Healthc. Eng. 6, 419–434 (2015)CrossRef
6.
go back to reference Lindberg, K., Bakker, S., Sartori, I.: Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts. Utilities Policy 58, 63–88 (2019)CrossRef Lindberg, K., Bakker, S., Sartori, I.: Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts. Utilities Policy 58, 63–88 (2019)CrossRef
7.
go back to reference Chen, Y., Luh, P., Rourke, S.: Short-term load forecasting: similar day-based wavelet neural networks. IEEE Trans. Power Syst. 25(1), 322–330 (2008)CrossRef Chen, Y., Luh, P., Rourke, S.: Short-term load forecasting: similar day-based wavelet neural networks. IEEE Trans. Power Syst. 25(1), 322–330 (2008)CrossRef
8.
go back to reference Yan, J., Tian, C., Huang, J., Wang, Y.: Load forecasting using twin gaussian process model. In: Proceedings of 2012 IEEE International Conference on Service Operations and Logistics, and Informatics, pp. 36–41. IEEE (2012) Yan, J., Tian, C., Huang, J., Wang, Y.: Load forecasting using twin gaussian process model. In: Proceedings of 2012 IEEE International Conference on Service Operations and Logistics, and Informatics, pp. 36–41. IEEE (2012)
9.
go back to reference Yanxia, L., Shi, H.-F.: The hourly load forecasting based on linear Gaussian state space model. In: 2012 International Conference on Machine Learning and Cybernetics 2, pp. 741–747. IEEE (2012) Yanxia, L., Shi, H.-F.: The hourly load forecasting based on linear Gaussian state space model. In: 2012 International Conference on Machine Learning and Cybernetics 2, pp. 741–747. IEEE (2012)
10.
go back to reference Khosravi, A., Nahavandi, S.: Load forecasting using interval type-2 fuzzy logic systems: optimal type reduction. IEEE Trans. Ind. Inform. 10(2), 1055–1063 (2013)CrossRef Khosravi, A., Nahavandi, S.: Load forecasting using interval type-2 fuzzy logic systems: optimal type reduction. IEEE Trans. Ind. Inform. 10(2), 1055–1063 (2013)CrossRef
11.
go back to reference Jetcheva, J.G., Majidpour, M., Chen, W.-P.: Neural network model ensembles for building-level electricity load forecasts. Energy Build. 84, 214–223 (2014)CrossRef Jetcheva, J.G., Majidpour, M., Chen, W.-P.: Neural network model ensembles for building-level electricity load forecasts. Energy Build. 84, 214–223 (2014)CrossRef
12.
go back to reference Richalet, V., Neirac, F.P., Tellez, F., Marco, J., Bloem, J.J.: HELP (house energy labeling procedure): methodology and present results. Energy Build. 33(3), 229–233 (2001)CrossRef Richalet, V., Neirac, F.P., Tellez, F., Marco, J., Bloem, J.J.: HELP (house energy labeling procedure): methodology and present results. Energy Build. 33(3), 229–233 (2001)CrossRef
13.
go back to reference Li, W., Gong, G., Fan, H., Peng, P., Chun, L.: Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting. Appl. Energy 270, 115144 (2020)CrossRef Li, W., Gong, G., Fan, H., Peng, P., Chun, L.: Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting. Appl. Energy 270, 115144 (2020)CrossRef
14.
go back to reference Liu, J.Y., Chen, H.X., Wang, J.Y., Li, G.N., Shi, S.B.: Time Series Prediction of the Indoor Temperature in the Subway Station Based on Data Mining Techniques. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics 39(6), 1316–1321 (2018) Liu, J.Y., Chen, H.X., Wang, J.Y., Li, G.N., Shi, S.B.: Time Series Prediction of the Indoor Temperature in the Subway Station Based on Data Mining Techniques. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics 39(6), 1316–1321 (2018)
15.
go back to reference Sendra-Arranz, R., Gutiérrez, A.: A long short-term memory artificial neural network to predict daily HVAC consumption in buildings. Energy Building 216, 109952 (2020)CrossRef Sendra-Arranz, R., Gutiérrez, A.: A long short-term memory artificial neural network to predict daily HVAC consumption in buildings. Energy Building 216, 109952 (2020)CrossRef
16.
go back to reference Liu, T., Xu, C., Guo, Y., Chen, H.: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction. Int. J. Refrig 107, 39–51 (2019)CrossRef Liu, T., Xu, C., Guo, Y., Chen, H.: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction. Int. J. Refrig 107, 39–51 (2019)CrossRef
17.
go back to reference Huang, Y., Yuan, Y., Chen, H., Wang, J., Guo, Y., Ahmad, T.: A novel energy demand prediction strategy for residential buildings based on ensemble learning. Energy Procedia 158, 3411–3416 (2019)CrossRef Huang, Y., Yuan, Y., Chen, H., Wang, J., Guo, Y., Ahmad, T.: A novel energy demand prediction strategy for residential buildings based on ensemble learning. Energy Procedia 158, 3411–3416 (2019)CrossRef
18.
go back to reference Alamin, Y.I., Álvarez, J.D., del Mar Castilla, M., Ruano, A.: An Artificial Neural Network (ANN) model to predict the electric load profile for an HVAC system. IFAC-PapersOnLine 51(10), 26–31 (2018)CrossRef Alamin, Y.I., Álvarez, J.D., del Mar Castilla, M., Ruano, A.: An Artificial Neural Network (ANN) model to predict the electric load profile for an HVAC system. IFAC-PapersOnLine 51(10), 26–31 (2018)CrossRef
19.
go back to reference Yu, Z., Haghighat, F., Fung, B.C.M., Yoshino, H.: A decision tree method for building energy demand modeling. Energy Buildings 42(10), 1637–1646 (2010)CrossRef Yu, Z., Haghighat, F., Fung, B.C.M., Yoshino, H.: A decision tree method for building energy demand modeling. Energy Buildings 42(10), 1637–1646 (2010)CrossRef
20.
go back to reference Gong, B., Ordieres-Meré, J.: Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong. Environ. Model Softw. 84, 290–303 (2016)CrossRef Gong, B., Ordieres-Meré, J.: Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong. Environ. Model Softw. 84, 290–303 (2016)CrossRef
21.
go back to reference Breiman, L.: Machine Learning, Volume 45, Number 1 - SpringerLink. Mach. Learn. 45, 5–32 (2001)CrossRef Breiman, L.: Machine Learning, Volume 45, Number 1 - SpringerLink. Mach. Learn. 45, 5–32 (2001)CrossRef
22.
go back to reference Wu, Z., et al.: Using an ensemble machine learning methodology-Bagging to predict occupants’ thermal comfort in buildings. Energy Buildings 173, 117–127 (2018)CrossRef Wu, Z., et al.: Using an ensemble machine learning methodology-Bagging to predict occupants’ thermal comfort in buildings. Energy Buildings 173, 117–127 (2018)CrossRef
23.
go back to reference Ridgeway, G.: Generalized boosted models: a guide to the GBM package. Comput. 1, 1–12 (2005) Ridgeway, G.: Generalized boosted models: a guide to the GBM package. Comput. 1, 1–12 (2005)
Metadata
Title
A Simple and Novel Method to Predict the Hospital Energy Use Based on Machine Learning: A Case Study in Norway
Authors
Kai Xue
Yiyu Ding
Zhirong Yang
Natasa Nord
Mael Roger Albert Barillec
Hans Martin Mathisen
Meng Liu
Tor Emil Giske
Liv Inger Stenstad
Guangyu Cao
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-63820-7_2

Premium Partner