Skip to main content
Top
Published in: Electrical Engineering 2/2021

03-01-2021 | Original Paper

A simple magnetic equivalent circuit model for switched reluctance machine

Authors: Payam Vahedi, Babak Ganji

Published in: Electrical Engineering | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present paper, a simple model based on magnetic equivalent circuit (MEC) method is introduced for the switched reluctance machine to predict the phase flux linkage characteristic. All equations required to build up the model are given, and therefore, someone can use it easily for different types of the switched reluctance machines. Because of large speed of the suggested model, it can be utilized properly for quick prediction of machine performance. The suggested MEC model is applied to a typical 8/6 switched reluctance motor (SRM), and simulation results including flux linked by a phase, phase current and instantaneous torque are presented. In order to validate the suggested MEC model, the obtained simulation results are compared to those derived from finite element method (FEM) and experimental results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Miller TJE (1993) Switched reluctance motor and their control. Clarendon, Oxford U.K Miller TJE (1993) Switched reluctance motor and their control. Clarendon, Oxford U.K
2.
go back to reference Krishnan R (2001) Switched reluctance motor drives modeling, simulation, analysis, design and applications. CRC Press, FL, USA Krishnan R (2001) Switched reluctance motor drives modeling, simulation, analysis, design and applications. CRC Press, FL, USA
3.
go back to reference Hu Y et al (2015) Winding-centre-tapped switched reluctance motor drive for multi-source charging in electric vehicle applications. IET Power Electron 8(11):2067–2075CrossRef Hu Y et al (2015) Winding-centre-tapped switched reluctance motor drive for multi-source charging in electric vehicle applications. IET Power Electron 8(11):2067–2075CrossRef
4.
go back to reference Todd R et al (2014) Behavioural modelling of a switched reluctance motor drive for aircraft power systems. IET Electr Syst Transp 4(4):107–113CrossRef Todd R et al (2014) Behavioural modelling of a switched reluctance motor drive for aircraft power systems. IET Electr Syst Transp 4(4):107–113CrossRef
5.
go back to reference Choi D, Byun S, Cho Y (2014) A study on the maximum power control method of switched reluctance generator for wind turbine. IEEE Trans Magn 50(1):1–4CrossRef Choi D, Byun S, Cho Y (2014) A study on the maximum power control method of switched reluctance generator for wind turbine. IEEE Trans Magn 50(1):1–4CrossRef
6.
go back to reference Miller TJE, McGilp M (1990) Nonlinear theory of the switched reluctance motor for rapid computer-aided design. IEE Proc 137(6):337–347 Miller TJE, McGilp M (1990) Nonlinear theory of the switched reluctance motor for rapid computer-aided design. IEE Proc 137(6):337–347
7.
go back to reference Farshad M, Faiz J, Lucas C (2005) Development of analytical models of switched reluctance motor in two-phase excitation mode: extended miller model. IEEE Trans Magn 41(6):2145–2155CrossRef Farshad M, Faiz J, Lucas C (2005) Development of analytical models of switched reluctance motor in two-phase excitation mode: extended miller model. IEEE Trans Magn 41(6):2145–2155CrossRef
8.
go back to reference Radun A (2000) Analytically computing the flux linked by a switched reluctance motor phase when the stator and rotor poles overlap. IEEE Trans Magn 36(4):1996–2003CrossRef Radun A (2000) Analytically computing the flux linked by a switched reluctance motor phase when the stator and rotor poles overlap. IEEE Trans Magn 36(4):1996–2003CrossRef
9.
go back to reference Uddin W, Sozer Y (2017) Analytical modeling of mutually coupled switched reluctance machines under saturation based on design geometry. IEEE Trans Ind Appl 53(5):4431–4440CrossRef Uddin W, Sozer Y (2017) Analytical modeling of mutually coupled switched reluctance machines under saturation based on design geometry. IEEE Trans Ind Appl 53(5):4431–4440CrossRef
10.
go back to reference Preston MA, Lyons JP (1991) A switched reluctance motor model with mutual coupling and multi-phase excitation. IEEE Trans Magn 27(6):5423–5425CrossRef Preston MA, Lyons JP (1991) A switched reluctance motor model with mutual coupling and multi-phase excitation. IEEE Trans Magn 27(6):5423–5425CrossRef
11.
go back to reference Moallem M, Dawson GE (1998) An improved magnetic equivalent circuit method for predicting the characteristic of highly saturated electromagnetic devices. IEEE Trans Magn 34(5):3632–3635CrossRef Moallem M, Dawson GE (1998) An improved magnetic equivalent circuit method for predicting the characteristic of highly saturated electromagnetic devices. IEEE Trans Magn 34(5):3632–3635CrossRef
12.
go back to reference Sheth NK, Rajagopal KR (2005) Calculation of the flux-linkage characteristics of a switched reluctance motor by flux tube method. IEEE Trans Magn 41(10):4069–4071CrossRef Sheth NK, Rajagopal KR (2005) Calculation of the flux-linkage characteristics of a switched reluctance motor by flux tube method. IEEE Trans Magn 41(10):4069–4071CrossRef
13.
go back to reference Deihimi A, Farhangi S, Henneberger G (2002) A general nonlinear model of switched reluctance motor with mutual coupling and multiphase excitation. Electr Eng 84:143–158CrossRef Deihimi A, Farhangi S, Henneberger G (2002) A general nonlinear model of switched reluctance motor with mutual coupling and multiphase excitation. Electr Eng 84:143–158CrossRef
14.
go back to reference Vujicic V, Vukosavic SN (2000) A simple nonlinear model of the switched reluctance motor. IEEE Trans Energy Convers 15(4):395–400CrossRef Vujicic V, Vukosavic SN (2000) A simple nonlinear model of the switched reluctance motor. IEEE Trans Energy Convers 15(4):395–400CrossRef
15.
go back to reference Radimov N, Ben-Hail N, Rabinovici R (2004) Simple model of switched-reluctance machine based only on aligned and unaligned position data. IEEE Trans Magn 40(3):1562–1572CrossRef Radimov N, Ben-Hail N, Rabinovici R (2004) Simple model of switched-reluctance machine based only on aligned and unaligned position data. IEEE Trans Magn 40(3):1562–1572CrossRef
16.
go back to reference Lin D (2009) An analytical circuit model of switched reluctance motors. IEEE Trans Magn 45(12):5368–5375CrossRef Lin D (2009) An analytical circuit model of switched reluctance motors. IEEE Trans Magn 45(12):5368–5375CrossRef
17.
go back to reference Mao SH, Dorrell D, Tsai MC (2009) Fast analytical determination of aligned and unaligned flux linkage in switched reluctance motors based on a magnetic circuit model. IEEE Trans Magn 45(7):2935–2942CrossRef Mao SH, Dorrell D, Tsai MC (2009) Fast analytical determination of aligned and unaligned flux linkage in switched reluctance motors based on a magnetic circuit model. IEEE Trans Magn 45(7):2935–2942CrossRef
18.
go back to reference Ding W, Liang D, Tang R (2011) A fast nonlinear variable structure equivalent magnetic circuit modeling for dual-channel switched reluctance machine. Energy Convers Manage 52(1):308–320CrossRef Ding W, Liang D, Tang R (2011) A fast nonlinear variable structure equivalent magnetic circuit modeling for dual-channel switched reluctance machine. Energy Convers Manage 52(1):308–320CrossRef
19.
go back to reference Ding W et al (2014) Magnetic circuit model and finite-element analysis of a modular switched reluctance machine with E-core stators and multi-layer common rotors. IET Electr Power Appl 8(8):296–309CrossRef Ding W et al (2014) Magnetic circuit model and finite-element analysis of a modular switched reluctance machine with E-core stators and multi-layer common rotors. IET Electr Power Appl 8(8):296–309CrossRef
20.
go back to reference Chen H, Yan W, Wang Q (2016) Electromagnetic analysis of flux characteristics of double-sided switched reluctance linear machine. IEEE Trans Appl Supercond 26(4):1–7 Chen H, Yan W, Wang Q (2016) Electromagnetic analysis of flux characteristics of double-sided switched reluctance linear machine. IEEE Trans Appl Supercond 26(4):1–7
21.
go back to reference W. Peng, J. Gyselinck (2016) Magnetic-equivalent-circuit modelling of switched reluctance machines with mutual coupling effects, International Conference on Electrical Machines ICEM. Lausanne, Switzerland W. Peng, J. Gyselinck (2016) Magnetic-equivalent-circuit modelling of switched reluctance machines with mutual coupling effects, International Conference on Electrical Machines ICEM. Lausanne, Switzerland
22.
go back to reference Yu Q, Wang X, Cheng Y (2016) Magnetic modeling of saliency effect for saturated electrical machines with a new calculation method. IEEE Trans Magn 52(6):1–6CrossRef Yu Q, Wang X, Cheng Y (2016) Magnetic modeling of saliency effect for saturated electrical machines with a new calculation method. IEEE Trans Magn 52(6):1–6CrossRef
23.
go back to reference Yan W, Chen H, Wang K, Chen L (2018) Dynamic circuit model considering core losses and phase interaction for switched reluctance machines. IET Electr Power Appl 12(6):826–836CrossRef Yan W, Chen H, Wang K, Chen L (2018) Dynamic circuit model considering core losses and phase interaction for switched reluctance machines. IET Electr Power Appl 12(6):826–836CrossRef
25.
go back to reference Faiz J, Ganji B, Carstensen CE, De Doncker RW (2009) Loss prediction in switched reluctance machines using finite element method. J Eur Trans Electr Power 19:731–748CrossRef Faiz J, Ganji B, Carstensen CE, De Doncker RW (2009) Loss prediction in switched reluctance machines using finite element method. J Eur Trans Electr Power 19:731–748CrossRef
26.
go back to reference Faiz J, Ganji B, De Doncker R, Fiedler J (2006) Electromagnetic modeling of switched reluctance motor using FEM, The 32nd annual conference of the IEEE industrial electronics society, IECON’06. Paris, France, pp 1557–1562 Faiz J, Ganji B, De Doncker R, Fiedler J (2006) Electromagnetic modeling of switched reluctance motor using FEM, The 32nd annual conference of the IEEE industrial electronics society, IECON’06. Paris, France, pp 1557–1562
27.
go back to reference Zhang J, Radun AV (2006) A new method to measure the switched reluctance motor’s flux. IEEE Trans Ind Appl 42(5):1171–1176CrossRef Zhang J, Radun AV (2006) A new method to measure the switched reluctance motor’s flux. IEEE Trans Ind Appl 42(5):1171–1176CrossRef
Metadata
Title
A simple magnetic equivalent circuit model for switched reluctance machine
Authors
Payam Vahedi
Babak Ganji
Publication date
03-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 2/2021
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-020-01146-9

Other articles of this Issue 2/2021

Electrical Engineering 2/2021 Go to the issue