Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 9-12/2020

04-08-2020 | ORIGINAL ARTICLE

A simple method for predicting the machinability in microwave cutting ceramics with microwave-induced thermal-crack propagation

Authors: Chunyang Zhao, Xiaoliang Cheng, Hailong Wang, Yang Wang, Xin Dou, Zhenlong Wang

Published in: The International Journal of Advanced Manufacturing Technology | Issue 9-12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microwave-induced thermal-crack propagation (MITP) is an advanced processing technology for cutting ceramics introduced recently. However, due to the lack of methods to predict its machinability, its application has been limited. In order to evaluate the machinability of this method for different ceramic materials, in this paper, a simple method is presented to predict the machinability in microwave cutting ceramics. Firstly, the processing difficulty of microwave cutting ceramics using MITP is analyzed based on the fracture mechanics, and the concept of crack initiation factor is proposed. An experimental work demonstrates that crack initiation factor is effective to predict the machinability. However, the crack initiation factor is closely related to many process parameters in MITP, so its prediction process is complicated. To find a practical and straightforward method, the ceramic heated by the static point heat source is analyzed, and the crack initiation factor is simplified as the crack factor which is only related to the physical parameters of the material in this model. The theoretical calculation shows that there is a positive correlation between the crack factor and the crack initiation factor, so the machinability in MITP can be predicted by this simplified factor. By establishing a link with the processing parameters, the crack factor can be used to pre-select the processing parameters. The simulation results show that the crack factor can also be used to predict the relative magnitude of temperature gradient and maximum thermal stress of different ceramics under the same processing conditions. This study provides a simple and effective method for predicting the machinability of ceramics using MITP.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen B, Guo B, Zhao Q (2015) An investigation into parallel and cross grinding of aspheric surface on monocrystal silicon. Int J Adv Manuf Technol 80(5-8):737–746CrossRef Chen B, Guo B, Zhao Q (2015) An investigation into parallel and cross grinding of aspheric surface on monocrystal silicon. Int J Adv Manuf Technol 80(5-8):737–746CrossRef
2.
go back to reference Li C, Zhang F, Meng B, Liu L, Rao X (2017) Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceram Int 43(3):2981–2993CrossRef Li C, Zhang F, Meng B, Liu L, Rao X (2017) Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceram Int 43(3):2981–2993CrossRef
3.
go back to reference Muhammad A, Rahman M, San WY, Doshi N (2011) An experimental approach to study the capability of end-milling for microcutting of glass. Int J Adv Manuf Technol 53(9-12):1063–1073CrossRef Muhammad A, Rahman M, San WY, Doshi N (2011) An experimental approach to study the capability of end-milling for microcutting of glass. Int J Adv Manuf Technol 53(9-12):1063–1073CrossRef
4.
go back to reference Li C, Zhang F, Wu Y, Zhang X (2018) Influence of strain rate effect on material removal and deformation mechanism based on ductile nanoscratch tests of Lu2O3 single crystal. Ceram Int 44(17):21486–21498CrossRef Li C, Zhang F, Wu Y, Zhang X (2018) Influence of strain rate effect on material removal and deformation mechanism based on ductile nanoscratch tests of Lu2O3 single crystal. Ceram Int 44(17):21486–21498CrossRef
5.
go back to reference Ding Y, Yang L, Cheng B, Wang X, Wang Y, Xie H (2018) Investigations on femtosecond laser-modified microgroove-textured cemented carbide YT15 turning tool with promotion in cutting performance. Int J Adv Manuf Technol 96:4367–4379CrossRef Ding Y, Yang L, Cheng B, Wang X, Wang Y, Xie H (2018) Investigations on femtosecond laser-modified microgroove-textured cemented carbide YT15 turning tool with promotion in cutting performance. Int J Adv Manuf Technol 96:4367–4379CrossRef
6.
go back to reference Hu H, Zhai Z, Li Y, Wang H, Dai J (2015) Researches on physical field evolution of micro-cutting of steel h13 by micron scale ceramic cutter based on finite element modeling. Int J Adv Manuf Technol 78(9-12):1407–1414CrossRef Hu H, Zhai Z, Li Y, Wang H, Dai J (2015) Researches on physical field evolution of micro-cutting of steel h13 by micron scale ceramic cutter based on finite element modeling. Int J Adv Manuf Technol 78(9-12):1407–1414CrossRef
7.
go back to reference Anicic O, Jović S, Skrijelj H, Nedić B (2017) Prediction of laser cutting heat affected zone by extreme learning machine. Opt Lasers Eng 88:1–4CrossRef Anicic O, Jović S, Skrijelj H, Nedić B (2017) Prediction of laser cutting heat affected zone by extreme learning machine. Opt Lasers Eng 88:1–4CrossRef
8.
go back to reference Yang L, Ding Y, Cheng B, Mohammed A, Wang Y (2017) Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point. Int J Adv Manuf Technol 91(1-4):1171–1180CrossRef Yang L, Ding Y, Cheng B, Mohammed A, Wang Y (2017) Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point. Int J Adv Manuf Technol 91(1-4):1171–1180CrossRef
9.
go back to reference Quintero F, Pou J, Lusquiños F, Riveiro A, Pérez-Amor M (2007) Single-pass and multi-pass laser cutting of Si–SiC: assessment of the cut quality and microstructure in the heat affected zone. J Laser APPL 19(3):170–176CrossRef Quintero F, Pou J, Lusquiños F, Riveiro A, Pérez-Amor M (2007) Single-pass and multi-pass laser cutting of Si–SiC: assessment of the cut quality and microstructure in the heat affected zone. J Laser APPL 19(3):170–176CrossRef
10.
go back to reference Li H, Wang Y, Wang Z, Zhao Z (2018) Fabrication of ZrB2–SiC–graphite ceramic micro-nozzle by micro-EDM segmented milling. J Micromech Microeng 28(10):105022CrossRef Li H, Wang Y, Wang Z, Zhao Z (2018) Fabrication of ZrB2–SiC–graphite ceramic micro-nozzle by micro-EDM segmented milling. J Micromech Microeng 28(10):105022CrossRef
11.
go back to reference Hu C, Zhou Y, Bao Y (2008) Material removal and surface damage in EDM of TiSiC ceramic. Ceram Int 34(3):537–541CrossRef Hu C, Zhou Y, Bao Y (2008) Material removal and surface damage in EDM of TiSiC ceramic. Ceram Int 34(3):537–541CrossRef
12.
go back to reference Evans A (2010) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73(2):187–206CrossRef Evans A (2010) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73(2):187–206CrossRef
13.
go back to reference Ma L, Wang H, Yu A, Wang L, Zhou Y (2017) Theoretical equation of cutting temperature for brittle materials in turning fluorophlogopite ceramics. Int J Adv Manuf Technol 92:3571–3582CrossRef Ma L, Wang H, Yu A, Wang L, Zhou Y (2017) Theoretical equation of cutting temperature for brittle materials in turning fluorophlogopite ceramics. Int J Adv Manuf Technol 92:3571–3582CrossRef
14.
go back to reference Lumley R (1969) Controlled separation of brittle materials using a laser. Am Ceram Soc Bull 48(9):850–854 Lumley R (1969) Controlled separation of brittle materials using a laser. Am Ceram Soc Bull 48(9):850–854
15.
go back to reference Haupt O, Schuetz V (2009) Schoonderbeek A, et al. High quality laser cleaving process for mono-and polycrystalline silicon. Proc Of Spie 72020G-72020G-11. Haupt O, Schuetz V (2009) Schoonderbeek A, et al. High quality laser cleaving process for mono-and polycrystalline silicon. Proc Of Spie 72020G-72020G-11.
16.
go back to reference Saman A, Furumoto T, Ueda T, Hosokawa A (2015) A study on separating of a silicon wafer with moving laser beam by using thermal stress cleaving technique. J Mater Process Technol 223:252–261CrossRef Saman A, Furumoto T, Ueda T, Hosokawa A (2015) A study on separating of a silicon wafer with moving laser beam by using thermal stress cleaving technique. J Mater Process Technol 223:252–261CrossRef
17.
go back to reference Yamada K, Ueda T, Hosokawa A, Yamane Y, Sekiya K (2006) Thermal damage of silicon wafer in thermal cleaving process with pulsed laser and CW laser. Proc Of Spie 6107:61070H–61070H-10CrossRef Yamada K, Ueda T, Hosokawa A, Yamane Y, Sekiya K (2006) Thermal damage of silicon wafer in thermal cleaving process with pulsed laser and CW laser. Proc Of Spie 6107:61070H–61070H-10CrossRef
18.
go back to reference Shalupaev S, Serdyukov A, Mityurich G, Aleksiejuk M, Nikitjuk Y, Sereda A (2013) Modeling of mechanical influence of double-beam laser on single-crystalline silicon. Arch Metall Mater 58(4):1381–1385CrossRef Shalupaev S, Serdyukov A, Mityurich G, Aleksiejuk M, Nikitjuk Y, Sereda A (2013) Modeling of mechanical influence of double-beam laser on single-crystalline silicon. Arch Metall Mater 58(4):1381–1385CrossRef
19.
go back to reference Cai Y, Yang L, Zhang H, Wang Y (2016) Laser cutting silicon-glass double layer wafer with laser induced thermal-crack propagation. Opt Lasers Eng 82:173–185CrossRef Cai Y, Yang L, Zhang H, Wang Y (2016) Laser cutting silicon-glass double layer wafer with laser induced thermal-crack propagation. Opt Lasers Eng 82:173–185CrossRef
20.
go back to reference Cai Y, Wang M, Zhang H, Yang L, Fu X, Wang Y (2017) Laser cutting sandwich structure glass–silicon–glass wafer with laser induced thermal–crack propagation. Opt Laser Technol 93:49–59CrossRef Cai Y, Wang M, Zhang H, Yang L, Fu X, Wang Y (2017) Laser cutting sandwich structure glass–silicon–glass wafer with laser induced thermal–crack propagation. Opt Laser Technol 93:49–59CrossRef
21.
go back to reference Cheng X, Yang L, Wang M, Cai Y, Wang Y, Ren Z (2019) Laser beam induced thermal-crack propagation for asymmetric liner cutting of silicon wafer. Opt Laser Technol 120:105765CrossRef Cheng X, Yang L, Wang M, Cai Y, Wang Y, Ren Z (2019) Laser beam induced thermal-crack propagation for asymmetric liner cutting of silicon wafer. Opt Laser Technol 120:105765CrossRef
22.
go back to reference Zhao C, Zhang H, Yang L, Wang Y, Ding Y (2016) Dual laser beam revising the separation path technology of laser induced thermal-crack propagation for asymmetric linear cutting glass. Int J Mach Tool Manu 106:43–55CrossRef Zhao C, Zhang H, Yang L, Wang Y, Ding Y (2016) Dual laser beam revising the separation path technology of laser induced thermal-crack propagation for asymmetric linear cutting glass. Int J Mach Tool Manu 106:43–55CrossRef
23.
go back to reference Yang L, Wang Y, Tian Z, Cai N (2010) YAG laser cutting soda-lime glass with controlled fracture and volumetric heat absorption. Int J Mach Tool Manu 50(10):849–859CrossRef Yang L, Wang Y, Tian Z, Cai N (2010) YAG laser cutting soda-lime glass with controlled fracture and volumetric heat absorption. Int J Mach Tool Manu 50(10):849–859CrossRef
24.
go back to reference Zhao C, Zhang H, Wang Y (2014) Semiconductor laser asymmetry cutting glass with laser induced thermal-crack propagation. Opt Lasers Eng 63:43–52CrossRef Zhao C, Zhang H, Wang Y (2014) Semiconductor laser asymmetry cutting glass with laser induced thermal-crack propagation. Opt Lasers Eng 63:43–52CrossRef
25.
go back to reference Cheng X, Yang L, Wang M, Cai Y, Wang Y, Ren Z (2019) The unbiased propagation mechanism in laser cutting silicon wafer with laser induced thermal-crack propagation. Appl Phys A Mater Sci Process 125(7):479CrossRef Cheng X, Yang L, Wang M, Cai Y, Wang Y, Ren Z (2019) The unbiased propagation mechanism in laser cutting silicon wafer with laser induced thermal-crack propagation. Appl Phys A Mater Sci Process 125(7):479CrossRef
26.
go back to reference Haupt O, Siegel F, Schoonderbeek A, Richter L, Ostendorf A (2008) Laser dicing of silicon: comparison of ablation mechanisms with a novel technology of thermally induced stress. J Laser Micro Nanoen 3(3):135–140CrossRef Haupt O, Siegel F, Schoonderbeek A, Richter L, Ostendorf A (2008) Laser dicing of silicon: comparison of ablation mechanisms with a novel technology of thermally induced stress. J Laser Micro Nanoen 3(3):135–140CrossRef
27.
go back to reference Karube K, and Karube N (2008) Laser-induced cleavage of LCD glass as full-body cutting. Laser-based Micro-& Nanopackaging & Assembly II 6880: 688007 Karube K, and Karube N (2008) Laser-induced cleavage of LCD glass as full-body cutting. Laser-based Micro-& Nanopackaging & Assembly II 6880: 688007
28.
go back to reference Wang H, Zhang H, Wang Y (2016) Cutting of glass and SiC ceramic sheets using controlled fracture technique with elliptic microwave spot. Ceram Int 43(2):1669–1676CrossRef Wang H, Zhang H, Wang Y (2016) Cutting of glass and SiC ceramic sheets using controlled fracture technique with elliptic microwave spot. Ceram Int 43(2):1669–1676CrossRef
29.
go back to reference Tsai C, Chen H (2003) Laser cutting of thick ceramic substrates by controlled fracture technique. J Mater Process Technol 136(1-3):166–173CrossRef Tsai C, Chen H (2003) Laser cutting of thick ceramic substrates by controlled fracture technique. J Mater Process Technol 136(1-3):166–173CrossRef
30.
go back to reference Wang H, Zhang H, Wang Y, Wang M (2019) Thermal controlled fracture of Al2O3 substrate by inducing microwave discharge in graphite coat. Ceram Int 45(5):6149–6159CrossRef Wang H, Zhang H, Wang Y, Wang M (2019) Thermal controlled fracture of Al2O3 substrate by inducing microwave discharge in graphite coat. Ceram Int 45(5):6149–6159CrossRef
31.
go back to reference Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, Cambridge University PressCrossRef Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, Cambridge University PressCrossRef
32.
go back to reference Sutton W (1989) Microwave processing of ceramic materials. Ceramic Bulletin 68:376–385 Sutton W (1989) Microwave processing of ceramic materials. Ceramic Bulletin 68:376–385
33.
go back to reference Stern M, Becker E, Dunham R (1976) A contour integral computation of mixed-mode stress intensity factors. Int J Fract 12(3):359–368 Stern M, Becker E, Dunham R (1976) A contour integral computation of mixed-mode stress intensity factors. Int J Fract 12(3):359–368
Metadata
Title
A simple method for predicting the machinability in microwave cutting ceramics with microwave-induced thermal-crack propagation
Authors
Chunyang Zhao
Xiaoliang Cheng
Hailong Wang
Yang Wang
Xin Dou
Zhenlong Wang
Publication date
04-08-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 9-12/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05731-x

Other articles of this Issue 9-12/2020

The International Journal of Advanced Manufacturing Technology 9-12/2020 Go to the issue

Premium Partners