Skip to main content
Top

2020 | OriginalPaper | Chapter

A Simulation Study on the Hydration of Magnesium-Based Thermochemical Heat Storage System for Residential Buildings

Authors : Yi Wang, Zhenqian Chen

Published in: Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019)

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermochemical heat storage system has a great potential due to its advantages of high heat storage density and long storage time. In this paper, a thermochemical heat storage system is designed based on Mg(OH)2/MgO and a two-dimensional mathematical model of exothermic process of the thermochemical energy storage reactor is established, which can be applied in residential buildings. The heat storage and exothermic processes of the heat storage units (HSU) are investigated by numerical simulation. The third boundary condition is adopted and the temperature change of the heat transfer fluid (HTF) in the channel is considered. After modeling the whole system, some parameters of the system are optimized, including the size of HSU, the inlet temperature of HTF, and the pressure of reaction bed, which is helpful to guide the design of thermochemical heat storage equipment in future. In addition, the results reveal that the reaction limit is in good agreement with previous literature and the energy storage density of magnesium-based thermochemical energy storage system is much higher than ordinary phase change materials such as paraffin. The heat storage system is expected to be a new type of heat storage system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abedin, A.H., Rosen, M.A.: A critical review of thermochemical energy storage systems. Open Renew. Energy J. 4(4), 42–46 (2011)CrossRef Abedin, A.H., Rosen, M.A.: A critical review of thermochemical energy storage systems. Open Renew. Energy J. 4(4), 42–46 (2011)CrossRef
2.
go back to reference N’Tsoukpoe, K.E., et al.: A review on long-term sorption solar energy storage. Renew. Sustain. Energy Rev. 13(9), 2385–2396 (2009)CrossRef N’Tsoukpoe, K.E., et al.: A review on long-term sorption solar energy storage. Renew. Sustain. Energy Rev. 13(9), 2385–2396 (2009)CrossRef
3.
go back to reference Ding, Y., Riffat, S.B.: Thermochemical energy storage technologies for building applications: a state-of-the-art review. Int. J. Low-Carbon Technol. 8(2), 106–116 (2013)CrossRef Ding, Y., Riffat, S.B.: Thermochemical energy storage technologies for building applications: a state-of-the-art review. Int. J. Low-Carbon Technol. 8(2), 106–116 (2013)CrossRef
4.
go back to reference G. Ervin.: Solar heat storage using chemical reactions. Sol. Heat Storage Using Chem. React. 22(1), 51–61 (1977)CrossRef G. Ervin.: Solar heat storage using chemical reactions. Sol. Heat Storage Using Chem. React. 22(1), 51–61 (1977)CrossRef
5.
go back to reference Garg, H.P., et al.: Solar Thermal Energy Storage. D. Reidel, Netherlands (1985)CrossRef Garg, H.P., et al.: Solar Thermal Energy Storage. D. Reidel, Netherlands (1985)CrossRef
6.
go back to reference Kato, Y., et al.: Durability to repetitive reaction of magnesium oxide/water reaction system for a heat pump. Appl. Therm. Eng. 18(18), 85–92 (1998)CrossRef Kato, Y., et al.: Durability to repetitive reaction of magnesium oxide/water reaction system for a heat pump. Appl. Therm. Eng. 18(18), 85–92 (1998)CrossRef
7.
go back to reference Razouk, R.I., Mikhail, R.S.: The sorption of water vapor on magnesium oxide. J. Phys. Chem. 59(7), 636–640 (1955)CrossRef Razouk, R.I., Mikhail, R.S.: The sorption of water vapor on magnesium oxide. J. Phys. Chem. 59(7), 636–640 (1955)CrossRef
8.
go back to reference Kato, Y., et al.: Kinetic study of the hydration of magnesium oxide for a chemical heat pump. Appl. Therm. Eng. 16(11), 853–862 (1996)CrossRef Kato, Y., et al.: Kinetic study of the hydration of magnesium oxide for a chemical heat pump. Appl. Therm. Eng. 16(11), 853–862 (1996)CrossRef
9.
go back to reference Kato, Y., et al.: Thermal analysis of a magnesium oxide/water chemical heat pump for cogeneration. Appl. Therm. Eng. 21(10), 1067–1081 (2001)CrossRef Kato, Y., et al.: Thermal analysis of a magnesium oxide/water chemical heat pump for cogeneration. Appl. Therm. Eng. 21(10), 1067–1081 (2001)CrossRef
10.
go back to reference Kato, Y., et al.: Thermal performance of a packed bed reactor of a chemical heat pump for cogeneration. Chem. Eng. Res. Des. 78(5), 745–748 (2000)CrossRef Kato, Y., et al.: Thermal performance of a packed bed reactor of a chemical heat pump for cogeneration. Chem. Eng. Res. Des. 78(5), 745–748 (2000)CrossRef
11.
go back to reference Kato, Y., et al.: Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system. Energy 30(11–12), 2144–2155 (2005)CrossRef Kato, Y., et al.: Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system. Energy 30(11–12), 2144–2155 (2005)CrossRef
12.
go back to reference Zamengo, M., et al.: Composite block of magnesium hydroxide—expanded graphite for chemical heat storage and heat pump. Appl. Therm. Eng. 69(1–2), 29–38 (2014)CrossRef Zamengo, M., et al.: Composite block of magnesium hydroxide—expanded graphite for chemical heat storage and heat pump. Appl. Therm. Eng. 69(1–2), 29–38 (2014)CrossRef
13.
go back to reference Zamengo, M., et al.: Magnesium hydroxide—expanded graphite composite pellets for a packed bed reactor chemical heat pump. Appl. Therm. Eng. 61(2), 853–858 (2013)CrossRef Zamengo, M., et al.: Magnesium hydroxide—expanded graphite composite pellets for a packed bed reactor chemical heat pump. Appl. Therm. Eng. 61(2), 853–858 (2013)CrossRef
14.
go back to reference Zamengo, M., et al.: Thermochemical performance of magnesium hydroxide–expanded graphite pellets for chemical heat pump. Appl. Therm. Eng. 64(1–2), 339–347 (2014)CrossRef Zamengo, M., et al.: Thermochemical performance of magnesium hydroxide–expanded graphite pellets for chemical heat pump. Appl. Therm. Eng. 64(1–2), 339–347 (2014)CrossRef
15.
go back to reference Kim, S.T., et al.: Optimization of magnesium hydroxide composite material mixed with expanded graphite and calcium chloride for chemical heat pumps. Appl. Therm. Eng. 50(1), 485–490 (2013)CrossRef Kim, S.T., et al.: Optimization of magnesium hydroxide composite material mixed with expanded graphite and calcium chloride for chemical heat pumps. Appl. Therm. Eng. 50(1), 485–490 (2013)CrossRef
16.
go back to reference Ishitobi, H., et al.: Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps. Appl. Therm. Eng. 50(2), 1639–1644 (2013)CrossRef Ishitobi, H., et al.: Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps. Appl. Therm. Eng. 50(2), 1639–1644 (2013)CrossRef
17.
go back to reference Myagmarjav, O., et al.: Dehydration kinetic study of a chemical heat storage material with lithium bromide for a magnesium oxide/water chemical heat pump. Prog. Nucl. Energy 82, 153–158 (2015)CrossRef Myagmarjav, O., et al.: Dehydration kinetic study of a chemical heat storage material with lithium bromide for a magnesium oxide/water chemical heat pump. Prog. Nucl. Energy 82, 153–158 (2015)CrossRef
18.
go back to reference Mastronardo, E., et al.: Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps. Appl. Energy 162, 31–39 (2016)CrossRef Mastronardo, E., et al.: Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps. Appl. Energy 162, 31–39 (2016)CrossRef
19.
go back to reference Mastronardo, E., et al.: Thermochemical storage of middle temperature wasted heat by functionalize d C/Mg(OH)2 hybrid materials. Energies 10(1), 70 (2017)CrossRef Mastronardo, E., et al.: Thermochemical storage of middle temperature wasted heat by functionalize d C/Mg(OH)2 hybrid materials. Energies 10(1), 70 (2017)CrossRef
20.
go back to reference Linder, M., et al.: Thermochemical energy storage in kw-scale based on CaO/Ca(OH)2. Energy Procedia 49, 888–897 (2014)CrossRef Linder, M., et al.: Thermochemical energy storage in kw-scale based on CaO/Ca(OH)2. Energy Procedia 49, 888–897 (2014)CrossRef
Metadata
Title
A Simulation Study on the Hydration of Magnesium-Based Thermochemical Heat Storage System for Residential Buildings
Authors
Yi Wang
Zhenqian Chen
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-9528-4_154