Skip to main content
Top
Published in: Pattern Analysis and Applications 4/2011

01-11-2011 | Theoretical Advances

A structurally motivated framework for discriminant analysis

Authors: Bo Yang, Songcan Chen, Xindong Wu

Published in: Pattern Analysis and Applications | Issue 4/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the last few years, a lot of algorithms for discriminant analysis (DA) have been developed. Although having different motivations, they all inject structure information in data into their own within- and between-class scatters. However, to our best knowledge, there has not been yet a systematical examination about (1) which structure granularities lurk in data; (2) which structure granularities are utilized in scatters of a DA algorithm; (3) whether new DA algorithms can be developed based on existing structure granularities. In this paper, the established so-called structurally motivated (SM) framework for DA and its unified mathematical formulation of the ratio trace exactly answers them. It categorizes these DA algorithms from the viewpoint of constructing scatters based on different-granularity structures in data, identifies their applicable scenarios for different structure types, and provides insights into developing new DA algorithms. Inspired by the insight, we find that cluster granularity lying in the middle of granularity spectrum in SM framework can still be further utilized and exploited. As a result, the three DA algorithms based on the cluster granularity are derived from the SM framework and from the injection of the cluster structure information into the respective within-class, between-class and joint both scatter matrices for the classical MDA, and these corresponding algorithms are, respectively, called as SWDA, SBDA and SWBDA. The injection of cluster structure information makes the proposed three algorithms able to fit relatively complicated data not only more effectively, but also with the regularization technique obtain more projections than the classical MDA, which is very helpful for more effective DA. Moreover, MDA becomes their special case when the cluster numbers of all classes are set to 1. Our experiments on the benchmarks (face and UCI databases) here show that the proposed algorithms yield encouraging results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
SWDA, SBDA and SWBDA are the three algorithms are subsequently proposed in this paper.
 
Literature
1.
go back to reference Duda RO, Hart PE, Stork DG (2001) Pattern Classification, 2nd edn. Wiley, New YorkMATH Duda RO, Hart PE, Stork DG (2001) Pattern Classification, 2nd edn. Wiley, New YorkMATH
2.
go back to reference Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2006) Graph embedding and extension: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2006) Graph embedding and extension: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef
3.
go back to reference Cai D, He XF, Kun Z, Han JW, Bao HJ (2007) Locality sensitive discriminant analysis. In: Proceedings of the international joint conference on artificial intelligence, Hyderabad, India, pp 141–146 Cai D, He XF, Kun Z, Han JW, Bao HJ (2007) Locality sensitive discriminant analysis. In: Proceedings of the international joint conference on artificial intelligence, Hyderabad, India, pp 141–146
4.
go back to reference Manli Z, Martinez AM (2006) Subclass discriminant analysis. IEEE Trans Pattern Anal Mach Intell 28(8):1274–1286CrossRef Manli Z, Martinez AM (2006) Subclass discriminant analysis. IEEE Trans Pattern Anal Mach Intell 28(8):1274–1286CrossRef
5.
go back to reference Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press, BostonMATH Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press, BostonMATH
6.
go back to reference Hastie T, Tibshirani R (1996) Discriminant analysis by gaussian mixture. J Roy Stat Soc B 58(1):155–176MathSciNetMATH Hastie T, Tibshirani R (1996) Discriminant analysis by gaussian mixture. J Roy Stat Soc B 58(1):155–176MathSciNetMATH
7.
go back to reference Ye J, Janardan R, Li Q (2005) Two-dimensional linear discriminant analysis. In: Proceedings of advances in neural information processing systems, vol 17, pp 1569–1576 Ye J, Janardan R, Li Q (2005) Two-dimensional linear discriminant analysis. In: Proceedings of advances in neural information processing systems, vol 17, pp 1569–1576
8.
go back to reference Hand D (1982) Kernel discriminant analysis. Research Studies Press, ChichesterMATH Hand D (1982) Kernel discriminant analysis. Research Studies Press, ChichesterMATH
9.
go back to reference Harrison RF, Pasupa K (2010) A simple iterative algorithm for parsimonious binary kernel Fisher discrimination. Pattern Anal Appl Theor Adv 13(1):15–22MathSciNetCrossRef Harrison RF, Pasupa K (2010) A simple iterative algorithm for parsimonious binary kernel Fisher discrimination. Pattern Anal Appl Theor Adv 13(1):15–22MathSciNetCrossRef
10.
go back to reference Shen C, Li H, Brooks MJ (2008) Supervised dimensionality reduction via sequential semidefinite programming. Pattern Recogn 41(12):3644–3652MATHCrossRef Shen C, Li H, Brooks MJ (2008) Supervised dimensionality reduction via sequential semidefinite programming. Pattern Recogn 41(12):3644–3652MATHCrossRef
11.
go back to reference Yeung DS, Wang D, Wing WYN, Tsang ECC, Zhao X (2007) Structured large margin machines: sensitive to data distributions. Mach Learn 68(2):171–200CrossRef Yeung DS, Wang D, Wing WYN, Tsang ECC, Zhao X (2007) Structured large margin machines: sensitive to data distributions. Mach Learn 68(2):171–200CrossRef
13.
go back to reference Vapnik VN (1999) The nature of statistical learning theory. Springer, New York Vapnik VN (1999) The nature of statistical learning theory. Springer, New York
14.
go back to reference Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRef Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRef
15.
go back to reference Shivaswamy PK, Jebara T (2007) Ellipsoidal kernel machines. In: Proceedings of the 11th artificial intelligence and statistics. San Juan, Puerto Rico, pp 481–489 Shivaswamy PK, Jebara T (2007) Ellipsoidal kernel machines. In: Proceedings of the 11th artificial intelligence and statistics. San Juan, Puerto Rico, pp 481–489
16.
go back to reference Huang K, Yang H, King I, Lyu MR (2004) Learning large margin classifiers locally and globally. In: Proceedings of the 21st international conference on machine learning. Banff, Canada, pp 51–59 Huang K, Yang H, King I, Lyu MR (2004) Learning large margin classifiers locally and globally. In: Proceedings of the 21st international conference on machine learning. Banff, Canada, pp 51–59
17.
go back to reference Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH
18.
go back to reference Xue H, Chen SC, Yang Q (2008) Structural support vector machine. In: Proceedings of the 15th international symposium on neural networks, LNCS5263, ISNN (1), pp 501–511 Xue H, Chen SC, Yang Q (2008) Structural support vector machine. In: Proceedings of the 15th international symposium on neural networks, LNCS5263, ISNN (1), pp 501–511
19.
go back to reference Boyd S, Vandenberghe L (2003) Convex optimization. Cambridge University Press, Cambridge Boyd S, Vandenberghe L (2003) Convex optimization. Cambridge University Press, Cambridge
20.
go back to reference Olvera-López J, Carrasco-Ochoa J, Martínez-Trinidad J (2010) A new fast prototype selection method based on clustering. Pattern Anal Appl Theor Adv 13(2):131–141CrossRef Olvera-López J, Carrasco-Ochoa J, Martínez-Trinidad J (2010) A new fast prototype selection method based on clustering. Pattern Anal Appl Theor Adv 13(2):131–141CrossRef
21.
go back to reference Zhu X (2008) Semi-supervised learning literature survey. Computer sciences technical report 1530, University of Wisconsin-Madison Zhu X (2008) Semi-supervised learning literature survey. Computer sciences technical report 1530, University of Wisconsin-Madison
22.
go back to reference Rao CR (2002) Linear statistical inference and its applications, 2nd edn. Wiley, New York Rao CR (2002) Linear statistical inference and its applications, 2nd edn. Wiley, New York
23.
go back to reference Brand M (2003) Continuous nonlinear dimensionality reduction by kernel eigenmaps. Technical report 2003–21, Mitsubishi Electric Research Labs Brand M (2003) Continuous nonlinear dimensionality reduction by kernel eigenmaps. Technical report 2003–21, Mitsubishi Electric Research Labs
24.
go back to reference Song Y, Nie F, Zhang C, Xiang S (2008) A unified framework for semi-supervised dimensionality reduction. Pattern Recogn 41(9):2789–2799MATHCrossRef Song Y, Nie F, Zhang C, Xiang S (2008) A unified framework for semi-supervised dimensionality reduction. Pattern Recogn 41(9):2789–2799MATHCrossRef
25.
go back to reference Turk M, Pentland A (1991) Face recognition using eigenfaces. In: Proceedings of the computer vision and pattern recognition, pp 586–591 Turk M, Pentland A (1991) Face recognition using eigenfaces. In: Proceedings of the computer vision and pattern recognition, pp 586–591
26.
go back to reference Tenenbaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323CrossRef Tenenbaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323CrossRef
27.
go back to reference Roweis S, Saul L (2000) Nonlinear discriminant analysis by locally linear embedding. Science 290(5500):2323–2326CrossRef Roweis S, Saul L (2000) Nonlinear discriminant analysis by locally linear embedding. Science 290(5500):2323–2326CrossRef
28.
go back to reference Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality redaction and data representation. Neural Comput 15(6):1373–1396MATHCrossRef Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality redaction and data representation. Neural Comput 15(6):1373–1396MATHCrossRef
29.
go back to reference He XF, Niyogi P (2003) Locality preserving projections. In: Proceedings of advances in neural information processing systems, vol 16. Vancouver, Canada, pp 153–160 He XF, Niyogi P (2003) Locality preserving projections. In: Proceedings of advances in neural information processing systems, vol 16. Vancouver, Canada, pp 153–160
30.
go back to reference Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):157–165CrossRef Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):157–165CrossRef
31.
go back to reference Li Y, Guan C (2007) Joint feature re-extraction and classification using an iterative semi-supervised SVM algorithm. Mach Learn 71(1):33–53CrossRef Li Y, Guan C (2007) Joint feature re-extraction and classification using an iterative semi-supervised SVM algorithm. Mach Learn 71(1):33–53CrossRef
32.
go back to reference Bengio Y, Delalleau O, Roux NL (2006) The Curse of highly variable functions for local kernel machines. In: Proceedings of advances in neural information processing systems, vol 18, pp 107–114 Bengio Y, Delalleau O, Roux NL (2006) The Curse of highly variable functions for local kernel machines. In: Proceedings of advances in neural information processing systems, vol 18, pp 107–114
33.
go back to reference Blake CL, Merz CJ (1998) UCI repository of machine learning databases. University of California, Irvine, Department of Information and Computer Sciences Blake CL, Merz CJ (1998) UCI repository of machine learning databases. University of California, Irvine, Department of Information and Computer Sciences
34.
go back to reference Salvador S, Chan P (2004) Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. In: Proceedings of the 16th IEEE international conference on tools with AI, pp 576–584 Salvador S, Chan P (2004) Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. In: Proceedings of the 16th IEEE international conference on tools with AI, pp 576–584
35.
go back to reference Ji S, Ye J (2008) A unified framework for generalized linear discriminant analysis. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 1–7. doi:10.1109/CVPR.2008.4587377 Ji S, Ye J (2008) A unified framework for generalized linear discriminant analysis. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 1–7. doi:10.​1109/​CVPR.​2008.​4587377
36.
37.
go back to reference Cai D, He X, Han J (2007) Spectral regression for efficient regularized subspace learning. In: Proceedings of IEEE international conference on computer vision, Rio de Janeiro, Brazil. doi:10.1109/ICCV.2007.4408855 Cai D, He X, Han J (2007) Spectral regression for efficient regularized subspace learning. In: Proceedings of IEEE international conference on computer vision, Rio de Janeiro, Brazil. doi:10.​1109/​ICCV.​2007.​4408855
38.
go back to reference Liu J, Chen SC, Tan XY (2008) Fractional order singular value decomposition representation for face recognition. Pattern Recogn 41(1):378–395MathSciNetMATHCrossRef Liu J, Chen SC, Tan XY (2008) Fractional order singular value decomposition representation for face recognition. Pattern Recogn 41(1):378–395MathSciNetMATHCrossRef
39.
go back to reference Yang T, Kecman V (2010) Face recognition with adaptive local hyperplane algorithm. Pattern Anal Appl Theor Adv 13(1):79–83MathSciNetCrossRef Yang T, Kecman V (2010) Face recognition with adaptive local hyperplane algorithm. Pattern Anal Appl Theor Adv 13(1):79–83MathSciNetCrossRef
40.
go back to reference Chougdali K, Jedra M, Zahid N (2010) Kernel relevance weighted discriminant analysis for face recognition. Pattern Anal Appl Theor Adv 13(2):213–221MathSciNetCrossRef Chougdali K, Jedra M, Zahid N (2010) Kernel relevance weighted discriminant analysis for face recognition. Pattern Anal Appl Theor Adv 13(2):213–221MathSciNetCrossRef
41.
go back to reference Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233CrossRef Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233CrossRef
42.
go back to reference Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is nearest neighbors meaningful? In: Processing of international conference on database theory, pp 217–235 Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is nearest neighbors meaningful? In: Processing of international conference on database theory, pp 217–235
43.
go back to reference van der Maaten LJP, Postma EO, van den Herik HJ (2009) Dimensionality reduction: a comparative review. Tilburg University Technical Report, TiCC-TR 2009-005 van der Maaten LJP, Postma EO, van den Herik HJ (2009) Dimensionality reduction: a comparative review. Tilburg University Technical Report, TiCC-TR 2009-005
44.
go back to reference Yang B, Chen S (2010) Sample-dependent graph construction with application to dimensionality reduction. Neurocomputing 74(1–3):301–314CrossRef Yang B, Chen S (2010) Sample-dependent graph construction with application to dimensionality reduction. Neurocomputing 74(1–3):301–314CrossRef
Metadata
Title
A structurally motivated framework for discriminant analysis
Authors
Bo Yang
Songcan Chen
Xindong Wu
Publication date
01-11-2011
Publisher
Springer-Verlag
Published in
Pattern Analysis and Applications / Issue 4/2011
Print ISSN: 1433-7541
Electronic ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-011-0228-8

Other articles of this Issue 4/2011

Pattern Analysis and Applications 4/2011 Go to the issue

Premium Partner