Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 1-4/2019

11-06-2019 | ORIGINAL ARTICLE

A study on welding mode transition by electrical detection of laser-induced plasma at varying energy levels

Authors: Shengbin Zhao, Lijun Yang, Yiming Huang, Dejin Zhao, Sai Xu

Published in: The International Journal of Advanced Manufacturing Technology | Issue 1-4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The transition between heat conduction and deep penetration laser welding is investigated by the electrical detection of laser-induced plasma with an electrical passive probe. A further improved physical model based on plasma sheath effect is established to clarify the mechanism of plasma electrical signal. Different electrical signals are detected at varying levels of laser input energy and analyzed in the time and frequency domains. The amplitudes and the fluctuation frequency of the collected signals are demonstrated to be effective in reflecting the electron temperature and the plasma oscillation features respectively. These assessments are identical with the experimental results obtained by a high-speed camera. Combined with the signal characteristics and the weld profiles at different laser powers, the critical state and laser power density of mode transition are discussed and identified by an analytic calculation model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kannatey-Asibu E (2009) Principles of laser material processing. Wiley, New JerseyCrossRef Kannatey-Asibu E (2009) Principles of laser material processing. Wiley, New JerseyCrossRef
2.
go back to reference Stavridis J, Papacharalampopoulos A, Stavropoulos P (2014) Quality assessment in laser welding: a critical review. Int J Adv Manuf Technol 94:1825–1847CrossRef Stavridis J, Papacharalampopoulos A, Stavropoulos P (2014) Quality assessment in laser welding: a critical review. Int J Adv Manuf Technol 94:1825–1847CrossRef
3.
go back to reference Zhang Y, Li LJ, Zhang G(2005) Experimental study on plasma inside the keyhole in deep penetration laser welding. Proc. SPIE, Lasers in Material Processing and Manufacturing II 5629 Zhang Y, Li LJ, Zhang G(2005) Experimental study on plasma inside the keyhole in deep penetration laser welding. Proc. SPIE, Lasers in Material Processing and Manufacturing II 5629
4.
go back to reference Shcheglov PY, Gumenyuk AV, Gornushkin IB, Rethmeier M, Petrovskiy VN (2013) Vapor–plasma plume investigation during high-power fiber laser welding. Laser Phys 23(1):016001CrossRef Shcheglov PY, Gumenyuk AV, Gornushkin IB, Rethmeier M, Petrovskiy VN (2013) Vapor–plasma plume investigation during high-power fiber laser welding. Laser Phys 23(1):016001CrossRef
5.
go back to reference Chen QT, Tang XH, Lu FG, L Y, Cui HC (2015) Study on the effect of laser-induced plasma plume on penetration in fiber laser welding under subatmospheric pressure. Int Adv Manuf Technol 78:331–339CrossRef Chen QT, Tang XH, Lu FG, L Y, Cui HC (2015) Study on the effect of laser-induced plasma plume on penetration in fiber laser welding under subatmospheric pressure. Int Adv Manuf Technol 78:331–339CrossRef
6.
go back to reference Tenner F, Brock C, Klämpfl F, Schmidt M (2015) Analysis of the correlation between plasma plume and keyhole behavior in laser metal welding for modeling of the keyhole geometry. Opt Lasers Eng 64:32–41CrossRef Tenner F, Brock C, Klämpfl F, Schmidt M (2015) Analysis of the correlation between plasma plume and keyhole behavior in laser metal welding for modeling of the keyhole geometry. Opt Lasers Eng 64:32–41CrossRef
7.
go back to reference Nakamura S, Sakurai M, Kamimuki K, Inoue T, Ito Y (2000) Detection technique for transition between deep penetration mode and shallow penetration mode in CO2 laser welding of metals. J Phys D Appl Phys 33(22):2941–2948CrossRef Nakamura S, Sakurai M, Kamimuki K, Inoue T, Ito Y (2000) Detection technique for transition between deep penetration mode and shallow penetration mode in CO2 laser welding of metals. J Phys D Appl Phys 33(22):2941–2948CrossRef
8.
go back to reference Purtonen T, Kalliosaari A, Salminen A (2014) Monitoring and adaptive control of laser processes. Phys Procedia 56:1218–1231CrossRef Purtonen T, Kalliosaari A, Salminen A (2014) Monitoring and adaptive control of laser processes. Phys Procedia 56:1218–1231CrossRef
9.
go back to reference Mao Y, Kinsman G, Duley WW (1993) Real-time fast Fourier transform analysis of acoustic emission during CO2 laser welding of materials. J Laser Appl 5(2):17–22CrossRef Mao Y, Kinsman G, Duley WW (1993) Real-time fast Fourier transform analysis of acoustic emission during CO2 laser welding of materials. J Laser Appl 5(2):17–22CrossRef
10.
go back to reference Sibillano T, Ancona A, Berardi V, Schingaro E, Basile G, Lugarà PM (2007) Optical detection of conduction/keyhole mode transition in laser welding. J Mater Process Technol 191(1–3):364–367CrossRef Sibillano T, Ancona A, Berardi V, Schingaro E, Basile G, Lugarà PM (2007) Optical detection of conduction/keyhole mode transition in laser welding. J Mater Process Technol 191(1–3):364–367CrossRef
11.
go back to reference Sanders PG, Leong KH, Keske JS, Kornecki G (1998) Real-time monitoring of laserbeam welding using infrared weld emissions. J Laser Appl 10(5):205–211CrossRef Sanders PG, Leong KH, Keske JS, Kornecki G (1998) Real-time monitoring of laserbeam welding using infrared weld emissions. J Laser Appl 10(5):205–211CrossRef
12.
go back to reference Martin B, Loredo A, Pilloz M, Grevey D (2001) Characterisation of CW Nd:YAG laser keyhole dynamics. Opt Laser Technol 33(4):201–207CrossRef Martin B, Loredo A, Pilloz M, Grevey D (2001) Characterisation of CW Nd:YAG laser keyhole dynamics. Opt Laser Technol 33(4):201–207CrossRef
13.
go back to reference Zhang YM, Ma Y (2001) Stochastic modelling of plasma reflection during keyhole arc welding. Meas Sci Technol 12:1964–1975CrossRef Zhang YM, Ma Y (2001) Stochastic modelling of plasma reflection during keyhole arc welding. Meas Sci Technol 12:1964–1975CrossRef
14.
go back to reference Zhang YM, Zhang SB, Liu YC (2001) A plasma cloud charge sensor for pulse keyhole process control. Meas Sci Technol 12:1365–1370CrossRef Zhang YM, Zhang SB, Liu YC (2001) A plasma cloud charge sensor for pulse keyhole process control. Meas Sci Technol 12:1365–1370CrossRef
15.
go back to reference Bi C, Yang LJ, Xu WH, Wang LP (2012) An electrical detection of the fluctuating plasma of laser welding with a passive probe. J Phys D Appl Phys 45(38):385202CrossRef Bi C, Yang LJ, Xu WH, Wang LP (2012) An electrical detection of the fluctuating plasma of laser welding with a passive probe. J Phys D Appl Phys 45(38):385202CrossRef
16.
go back to reference Zhao SB, Yang LJ, Liu T, Yang RX, Pan JJ (2017) Analysis of plasma oscillations by electrical detection in Nd:YAG laser welding. J Mater Process Technol 249:479–489CrossRef Zhao SB, Yang LJ, Liu T, Yang RX, Pan JJ (2017) Analysis of plasma oscillations by electrical detection in Nd:YAG laser welding. J Mater Process Technol 249:479–489CrossRef
17.
go back to reference Huang YM, Xu S, Yang LJ, Zhao SB, Liu Y, Shi YS (2019) Defect detection during laser welding using electrical signals and high-speed photography. J Mater Process Technol 271:394–403CrossRef Huang YM, Xu S, Yang LJ, Zhao SB, Liu Y, Shi YS (2019) Defect detection during laser welding using electrical signals and high-speed photography. J Mater Process Technol 271:394–403CrossRef
18.
go back to reference Mrňa L, Sarbort M (2014) Plasma bursts in deep penetration laser welding. Phys Procedia 56:1261–1267CrossRef Mrňa L, Sarbort M (2014) Plasma bursts in deep penetration laser welding. Phys Procedia 56:1261–1267CrossRef
19.
go back to reference Sabbaghzadeh J, Dadras S, Torkamany MJ (2007) Comparison of pulsed Nd:YAG laser welding qualitative features with plasma plume thermal characteristics. J Phys D Appl Phys 40(4):1047–1051CrossRef Sabbaghzadeh J, Dadras S, Torkamany MJ (2007) Comparison of pulsed Nd:YAG laser welding qualitative features with plasma plume thermal characteristics. J Phys D Appl Phys 40(4):1047–1051CrossRef
20.
go back to reference Dadras S, Torkamany MJ, Sabbaghzadeh J (2008) Spectroscopic characterization of low-nickel copper welding with pulsed Nd:YAG laser. Opt Lasers Eng 46(10):769–776CrossRef Dadras S, Torkamany MJ, Sabbaghzadeh J (2008) Spectroscopic characterization of low-nickel copper welding with pulsed Nd:YAG laser. Opt Lasers Eng 46(10):769–776CrossRef
21.
go back to reference Mrňa L, Martin S, Rerucha S, Jedlicka P (2016) Autocorrelation analysis of plasma plume light emissions in deep penetration laser welding of steel. J Laser Appl 29(1):0122009 Mrňa L, Martin S, Rerucha S, Jedlicka P (2016) Autocorrelation analysis of plasma plume light emissions in deep penetration laser welding of steel. J Laser Appl 29(1):0122009
22.
go back to reference Sibillano T, Ancona A, Rizzi D, Saludes RS, Rodríguez NJ, Konuk, AR, Aarts R, Huis in’t Veld AJ (2010) Study on the correlation between plasma electron temperature and penetration depth in laser welding processes. Phys Proc5:429–439 Sibillano T, Ancona A, Rizzi D, Saludes RS, Rodríguez NJ, Konuk, AR, Aarts R, Huis in’t Veld AJ (2010) Study on the correlation between plasma electron temperature and penetration depth in laser welding processes. Phys Proc5:429–439
23.
go back to reference Bellan PM (2008) Fundamentals of plasma physics. Cambridge University Press Bellan PM (2008) Fundamentals of plasma physics. Cambridge University Press
24.
go back to reference Bekefi G (1976) Principles of laser plasmas. Wiley, New York Bekefi G (1976) Principles of laser plasmas. Wiley, New York
25.
go back to reference Finke BR, Kapadia BD, Dowden JM (1990) A fundamental plasma based model for energy transfer in laser material processing. J Phys D Appl Phys 23(6):643–654CrossRef Finke BR, Kapadia BD, Dowden JM (1990) A fundamental plasma based model for energy transfer in laser material processing. J Phys D Appl Phys 23(6):643–654CrossRef
26.
go back to reference Richard D (1993) Plasma physics: an introductory course. Cambridge University Press Richard D (1993) Plasma physics: an introductory course. Cambridge University Press
27.
go back to reference Ambrosy G, Avilov V, Berger P, Huegel H(2007) Laser induced plasma as a source for an intensive current to produce electromagnetic forces in the weld pool. 16th International Symposium on Gas Flow 6346 Ambrosy G, Avilov V, Berger P, Huegel H(2007) Laser induced plasma as a source for an intensive current to produce electromagnetic forces in the weld pool. 16th International Symposium on Gas Flow 6346
28.
go back to reference Li L, Brookfield DJ, Steen WM (1996) Plasma charge sensor for in-process, non-contact monitoring of the laser welding process. Meas Sci Technol 7(4):615–626CrossRef Li L, Brookfield DJ, Steen WM (1996) Plasma charge sensor for in-process, non-contact monitoring of the laser welding process. Meas Sci Technol 7(4):615–626CrossRef
29.
go back to reference Hirano K, Fabbro R, Muller M (2011) Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure. J Phys D Appl Phys 44(43):435402CrossRef Hirano K, Fabbro R, Muller M (2011) Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure. J Phys D Appl Phys 44(43):435402CrossRef
30.
go back to reference Xiao XF, Song LJ, Xiao WJ, Liu XB (2016) Space-dependent characterization of laser-induced plasma plume during fiber laser welding. J Phys D Appl Phys 49(48):485203CrossRef Xiao XF, Song LJ, Xiao WJ, Liu XB (2016) Space-dependent characterization of laser-induced plasma plume during fiber laser welding. J Phys D Appl Phys 49(48):485203CrossRef
31.
go back to reference Chen X, Wang HX (2003) Prediction of the laser-induced plasma characteristics in laser welding: a new modelling approach including a simplified keyhole model. J Phys D Appl Phys 36(13):1634–1643CrossRef Chen X, Wang HX (2003) Prediction of the laser-induced plasma characteristics in laser welding: a new modelling approach including a simplified keyhole model. J Phys D Appl Phys 36(13):1634–1643CrossRef
32.
go back to reference Zhang LJ, Zhang JX, Gumenyuk A, Rethmeier M, Na SJ (2014) Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser. J Mater Process Technol 214(8):1710–1720CrossRef Zhang LJ, Zhang JX, Gumenyuk A, Rethmeier M, Na SJ (2014) Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser. J Mater Process Technol 214(8):1710–1720CrossRef
33.
go back to reference Lacroix D, Jeandel G, Boudot C (1997) Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser. J Appl Phys 81(10):6599–6606CrossRef Lacroix D, Jeandel G, Boudot C (1997) Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser. J Appl Phys 81(10):6599–6606CrossRef
35.
go back to reference Kawahito Y, Matsumoto N, Mizutani M, Katayama S (2008) Characterisation of plasma induced during high power fibre laser welding of stainless steel. Sci Technol Weld Join 13(8):744–748CrossRef Kawahito Y, Matsumoto N, Mizutani M, Katayama S (2008) Characterisation of plasma induced during high power fibre laser welding of stainless steel. Sci Technol Weld Join 13(8):744–748CrossRef
36.
go back to reference Zou JL, He Y, Wu SK, Huang T, Xiao RS (2015) Experimental and theoretical characterization of deep penetration welding threshold induced by 1μm laser. Appl Surf Sci 357:1522–1527CrossRef Zou JL, He Y, Wu SK, Huang T, Xiao RS (2015) Experimental and theoretical characterization of deep penetration welding threshold induced by 1μm laser. Appl Surf Sci 357:1522–1527CrossRef
37.
go back to reference Klein T, Vicanek M, Kroos J, Decker I, Simon G (1994) Oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 27(10):2023–2030CrossRef Klein T, Vicanek M, Kroos J, Decker I, Simon G (1994) Oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 27(10):2023–2030CrossRef
38.
go back to reference Fabbro R, Slimani S, Coste F, Briand F (2005) Study of keyhole behaviour for full penetration Nd-Yag CW laser welding. J Phys D Appl Phys 38(12):1881–1887CrossRef Fabbro R, Slimani S, Coste F, Briand F (2005) Study of keyhole behaviour for full penetration Nd-Yag CW laser welding. J Phys D Appl Phys 38(12):1881–1887CrossRef
39.
go back to reference He X, DebRoy T, Fuerschbach PW (2003) Alloying element vaporization during laser spot welding of stainless steel. J Phys D Appl Phys 36(23):3079–3088CrossRef He X, DebRoy T, Fuerschbach PW (2003) Alloying element vaporization during laser spot welding of stainless steel. J Phys D Appl Phys 36(23):3079–3088CrossRef
40.
go back to reference Liu JT, Weckman DC, Kerr HW (1993) The effects of process variables on pulsed Nd:YAG laser spot welds: part I. AISI 409 stainless steel. Metall Trans B 24(6):1065–1076CrossRef Liu JT, Weckman DC, Kerr HW (1993) The effects of process variables on pulsed Nd:YAG laser spot welds: part I. AISI 409 stainless steel. Metall Trans B 24(6):1065–1076CrossRef
41.
go back to reference Pang SY, Shao XY, Li W, Chen X, Gong SL (2016) Dynamic characteristics and mechanisms of compressible metallic vapor plume behaviors in transient keyhole during deep penetration fiber laser welding. Appl Phys A Mater Sci Process 22(7):122–702 Pang SY, Shao XY, Li W, Chen X, Gong SL (2016) Dynamic characteristics and mechanisms of compressible metallic vapor plume behaviors in transient keyhole during deep penetration fiber laser welding. Appl Phys A Mater Sci Process 22(7):122–702
Metadata
Title
A study on welding mode transition by electrical detection of laser-induced plasma at varying energy levels
Authors
Shengbin Zhao
Lijun Yang
Yiming Huang
Dejin Zhao
Sai Xu
Publication date
11-06-2019
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 1-4/2019
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-03916-7

Other articles of this Issue 1-4/2019

The International Journal of Advanced Manufacturing Technology 1-4/2019 Go to the issue

Premium Partners