Skip to main content
Top
Published in: Autonomous Robots 1/2015

01-06-2015

A suboptimal and analytical solution to mobile robot trajectory generation amidst moving obstacles

Authors: Jun Peng, Wenhao Luo, Weirong Liu, Wentao Yu, Jing Wang

Published in: Autonomous Robots | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we present a suboptimal and analytical solution to the trajectory generation of mobile robots operating in a dynamic environment with moving obstacles. The proposed solution explicitly addresses both the robot kinodynamic constraints and the geometric constraints due to obstacles while ensuring the suboptimal performance to a combined performance metric. In particular, the proposed design is based on a family of parameterized trajectories, which provides a unified way to embed the kinodynamic constraints, geometric constraints, and performance index into a set of parameterized constraint equations. To that end, the suboptimal solution to the constrained optimization problem can be analytically obtained. The solvability conditions to the constraint equations are explicitly established, and the proposed solution enhances the methodologies of real-time path planning for mobile robots with kinodynamic constraints. Both the simulation and experiment results verify the effectiveness of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Balkcom, D. J., & Mason, M. T. (2002). Time optimal trajectories for bounded velocity differential drive vehicles. The International Journal of Robotics Research (IJRR), 21, 199–217.CrossRef Balkcom, D. J., & Mason, M. T. (2002). Time optimal trajectories for bounded velocity differential drive vehicles. The International Journal of Robotics Research (IJRR), 21, 199–217.CrossRef
go back to reference Barraquand, J., & Latombe, J. C. (1991). Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 3, 2328–2335. Barraquand, J., & Latombe, J. C. (1991). Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 3, 2328–2335.
go back to reference Bhattacharya, S., Likhachev, M., & Kumar, V. (2012). Topological constraints in search-based robot path planning. Autonomous Robots, 33(3), 273–290.CrossRef Bhattacharya, S., Likhachev, M., & Kumar, V. (2012). Topological constraints in search-based robot path planning. Autonomous Robots, 33(3), 273–290.CrossRef
go back to reference Bicchi, A., Casalino, G., & Santilli, C. (1995). Planning shortest bounded-curvature paths for a class of nonholonomic vehicles among obstacles. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2, 1349–1354. Bicchi, A., Casalino, G., & Santilli, C. (1995). Planning shortest bounded-curvature paths for a class of nonholonomic vehicles among obstacles. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2, 1349–1354.
go back to reference Bonnans, J.-F., et al. (2006). Numerical optimization: Theoretical and practical aspects. Heidelberg: Springer. Bonnans, J.-F., et al. (2006). Numerical optimization: Theoretical and practical aspects. Heidelberg: Springer.
go back to reference Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 7, 278–288.CrossRef Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 7, 278–288.CrossRef
go back to reference Cheng, P., Frazzoli, E., & LaValle, S. (2008). Improving the performance of sampling-based motion planning with symmetry-based gap reduction. IEEE Transactions on Robotics, 24, 488–494.CrossRef Cheng, P., Frazzoli, E., & LaValle, S. (2008). Improving the performance of sampling-based motion planning with symmetry-based gap reduction. IEEE Transactions on Robotics, 24, 488–494.CrossRef
go back to reference Divelbiss, A. W., & Wen, J. T. (1997). A path space approach to nonholonomic motion planning in the presence of obstacles. IEEE Transactions on Robotics and Automation, 13, 443–451.CrossRef Divelbiss, A. W., & Wen, J. T. (1997). A path space approach to nonholonomic motion planning in the presence of obstacles. IEEE Transactions on Robotics and Automation, 13, 443–451.CrossRef
go back to reference Dong, W., & Guo, Y. (2005). New trajectory generation methods for nonholonomic mobile robots. Proceedings of the international symposium on collaborative technologies and systems, pp. 353–358. Dong, W., & Guo, Y. (2005). New trajectory generation methods for nonholonomic mobile robots. Proceedings of the international symposium on collaborative technologies and systems, pp. 353–358.
go back to reference Duleba, I., & Sasiadek, J. Z. (2003). Nonholonomic motion planning based on Newton algorithm with energy optimization. IEEE Transactions on Control Systems Technology, 11, 355–363.CrossRef Duleba, I., & Sasiadek, J. Z. (2003). Nonholonomic motion planning based on Newton algorithm with energy optimization. IEEE Transactions on Control Systems Technology, 11, 355–363.CrossRef
go back to reference Fiorini, P., & Shiller, Z. (1993). Motion planning in dynamic environments using the relative velocity paradigm. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1, 560–565.CrossRef Fiorini, P., & Shiller, Z. (1993). Motion planning in dynamic environments using the relative velocity paradigm. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1, 560–565.CrossRef
go back to reference Fliess, M., LeVine, J., Martin, P., & Rouchon, P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples. International Journal of Control, 61, 1327–1361.CrossRefMATHMathSciNet Fliess, M., LeVine, J., Martin, P., & Rouchon, P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples. International Journal of Control, 61, 1327–1361.CrossRefMATHMathSciNet
go back to reference Guo, Y., & Tang, T. (2008). Optimal trajectory generation for nonholonomic robots in dynamic environments. Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 2552–2557. Guo, Y., & Tang, T. (2008). Optimal trajectory generation for nonholonomic robots in dynamic environments. Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 2552–2557.
go back to reference Guo, Y., Li, Y., & Sheng, W. (2007). Global trajectory generation for nonholonomic robots in dynamic environments. Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 1324–1329. Guo, Y., Li, Y., & Sheng, W. (2007). Global trajectory generation for nonholonomic robots in dynamic environments. Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 1324–1329.
go back to reference Hashim, S., & Tien-Fu, L. (2009). A new strategy in dynamic time-dependent motion planning for nonholonomic mobile robots. IEEE international conference on robotics and biomimetics (ROBIO), pp. 1692–1697. Hashim, S., & Tien-Fu, L. (2009). A new strategy in dynamic time-dependent motion planning for nonholonomic mobile robots. IEEE international conference on robotics and biomimetics (ROBIO), pp. 1692–1697.
go back to reference Howard, T. M., & Kelly, A. (2007). Optimal rough terrain trajectory generation for wheeled mobile robots. International Journal of Robotics Research (IJRR), 26(2), 141–166.CrossRef Howard, T. M., & Kelly, A. (2007). Optimal rough terrain trajectory generation for wheeled mobile robots. International Journal of Robotics Research (IJRR), 26(2), 141–166.CrossRef
go back to reference John, S., et al. (2014). Motion planning with sequential convex optimization and convex collision checking. The International Journal of Robotics Research, 33(9), 1251–1270.CrossRef John, S., et al. (2014). Motion planning with sequential convex optimization and convex collision checking. The International Journal of Robotics Research, 33(9), 1251–1270.CrossRef
go back to reference Karaman, S., & Frazzoli, E. (2010). Optimal kinodynamic motion planning using incremental sampling-based methods. In: 49th IEEE conference on decision and control (CDC), pp. 7681–7687. Karaman, S., & Frazzoli, E. (2010). Optimal kinodynamic motion planning using incremental sampling-based methods. In: 49th IEEE conference on decision and control (CDC), pp. 7681–7687.
go back to reference Kim, J. O., & Khosla, P. K. (1992). Real-time obstacle avoidance using harmonic potential functions. IEEE Transactions on Robotics and Automation, 8, 338–349.CrossRef Kim, J. O., & Khosla, P. K. (1992). Real-time obstacle avoidance using harmonic potential functions. IEEE Transactions on Robotics and Automation, 8, 338–349.CrossRef
go back to reference Kindel, R., Hsu, D., Latombe, J. C., & Rock, S. (2000). Kinodynamic motion planning amidst moving obstacles. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1, 537–543. Kindel, R., Hsu, D., Latombe, J. C., & Rock, S. (2000). Kinodynamic motion planning amidst moving obstacles. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1, 537–543.
go back to reference Koenig, Sven, & Likhachev, Maxim. (2002). D* Lite. Proceedings of the eighteenth national conference on artificial intelligence (AAAI), pp. 476–483. Koenig, Sven, & Likhachev, Maxim. (2002). D* Lite. Proceedings of the eighteenth national conference on artificial intelligence (AAAI), pp. 476–483.
go back to reference Kushleyev, A., & Likhachev, M. (2009). Time-bounded lattice for efficient planning in dynamic environments. Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 1662–1668. Kushleyev, A., & Likhachev, M. (2009). Time-bounded lattice for efficient planning in dynamic environments. Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 1662–1668.
go back to reference Ladd, A. M., & Kavraki, L. E. (2004). Measure theoretic analysis of probabilistic path planning. IEEE Transactions on Robotics and Automation, 20, 229–242.CrossRef Ladd, A. M., & Kavraki, L. E. (2004). Measure theoretic analysis of probabilistic path planning. IEEE Transactions on Robotics and Automation, 20, 229–242.CrossRef
go back to reference LaValle, S. M., & Kuffner, J. J, Jr. (1999). Randomized kinodynamic planning. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1, 473–479. LaValle, S. M., & Kuffner, J. J, Jr. (1999). Randomized kinodynamic planning. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1, 473–479.
go back to reference Li, Z. X., & Canny, J. (1992). Nonholonomic motion planning, Dordrecht. The Netherlands: Kluwer. Li, Z. X., & Canny, J. (1992). Nonholonomic motion planning, Dordrecht. The Netherlands: Kluwer.
go back to reference Likhachev, M., & Ferguson, D. (2009). Planning long dynamically-feasible maneuvers for autonomous vehicles. International Journal of Robotics Research (IJRR), 28(8), 933–945.CrossRef Likhachev, M., & Ferguson, D. (2009). Planning long dynamically-feasible maneuvers for autonomous vehicles. International Journal of Robotics Research (IJRR), 28(8), 933–945.CrossRef
go back to reference Liu, S., & Sun, D. (2011). Optimal motion planning of a mobile robot with minimum energy consumption. IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp. 43–48. Liu, S., & Sun, D. (2011). Optimal motion planning of a mobile robot with minimum energy consumption. IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp. 43–48.
go back to reference De Luca, A., Oriolo, G., & Samson, C. (1998). Feedback control of a nonholonomic car-like robot. Robot Motion Planning and Control, 229, 171–253.CrossRef De Luca, A., Oriolo, G., & Samson, C. (1998). Feedback control of a nonholonomic car-like robot. Robot Motion Planning and Control, 229, 171–253.CrossRef
go back to reference Lvine, J. (2009). Analysis and control of nonlinear systems: A flatness-based approach. Berlin: Springer.CrossRef Lvine, J. (2009). Analysis and control of nonlinear systems: A flatness-based approach. Berlin: Springer.CrossRef
go back to reference Morales, J. L., Nocedal, J., Wu, Y. (2011). A sequential quadratic programming algorithm with an additional equality constrained phase. IMA Journal of Numerical Analysis, drq037. Morales, J. L., Nocedal, J., Wu, Y. (2011). A sequential quadratic programming algorithm with an additional equality constrained phase. IMA Journal of Numerical Analysis, drq037.
go back to reference Murray, R. M., & Sastry, S. S. (1993). Nonholonomic motion planning: Steering using sinusoids. IEEE Transactions on Automatic Control, 38, 700–716.CrossRefMATHMathSciNet Murray, R. M., & Sastry, S. S. (1993). Nonholonomic motion planning: Steering using sinusoids. IEEE Transactions on Automatic Control, 38, 700–716.CrossRefMATHMathSciNet
go back to reference Narayanan, V., Phillips, M., & Likhachev, M. (2012). Anytime safe interval path planning for dynamic environments. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 4708–4715. Narayanan, V., Phillips, M., & Likhachev, M. (2012). Anytime safe interval path planning for dynamic environments. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 4708–4715.
go back to reference Pivtoraiko, M., Knepper, R. A., & Kelly, A. (2009). Differentially constrained mobile robot motion planning in state lattices. Journal of Field Robotics (JFR), 26(3), 308–333.CrossRef Pivtoraiko, M., Knepper, R. A., & Kelly, A. (2009). Differentially constrained mobile robot motion planning in state lattices. Journal of Field Robotics (JFR), 26(3), 308–333.CrossRef
go back to reference Qu, Z., Wang, J., & Plaisted, C. E. (2004). A new analytical solution to mobile robot trajectory generation in the presence of moving obstacles. IEEE Transactions on Robotics, 20, 978–993.CrossRef Qu, Z., Wang, J., & Plaisted, C. E. (2004). A new analytical solution to mobile robot trajectory generation in the presence of moving obstacles. IEEE Transactions on Robotics, 20, 978–993.CrossRef
go back to reference Reister, D. B., & Pin, F. G. (1994). Time-optimal trajectories for mobile robots with two independently driven wheels. The International Journal of Robotics Research (IJRR), 13, 38–54.CrossRef Reister, D. B., & Pin, F. G. (1994). Time-optimal trajectories for mobile robots with two independently driven wheels. The International Journal of Robotics Research (IJRR), 13, 38–54.CrossRef
go back to reference Shiller, Z., Gal, O., & Raz, A. (2011). Adaptive time horizon for on-line avoidance in dynamic environments. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 3539–3544. Shiller, Z., Gal, O., & Raz, A. (2011). Adaptive time horizon for on-line avoidance in dynamic environments. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 3539–3544.
go back to reference Shiller, Z., Large, F., & Sekhavat, S. (2001). Motion planning in dynamic environments: Obstacles moving along arbitrary trajectories. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 4, 3716–3721. Shiller, Z., Large, F., & Sekhavat, S. (2001). Motion planning in dynamic environments: Obstacles moving along arbitrary trajectories. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 4, 3716–3721.
go back to reference Tilbury, D., & Murray, R. M. (1995). Trajectory generation for the N-trailer problem using Goursat normal form. IEEE Transactions on Automatic Control, 40, 802–819.CrossRefMATHMathSciNet Tilbury, D., & Murray, R. M. (1995). Trajectory generation for the N-trailer problem using Goursat normal form. IEEE Transactions on Automatic Control, 40, 802–819.CrossRefMATHMathSciNet
go back to reference Ucan, X. I., & Kavraki, L. E. (2012). A sampling-based tree planner for systems with complex dynamics. IEEE Transactions on Robotics, 28, 116–131.CrossRef Ucan, X. I., & Kavraki, L. E. (2012). A sampling-based tree planner for systems with complex dynamics. IEEE Transactions on Robotics, 28, 116–131.CrossRef
go back to reference van den Berg, J., & Overmars, M. (2007). Kinodynamic motion planning on roadmaps in dynamic environments. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 4253–4258. van den Berg, J., & Overmars, M. (2007). Kinodynamic motion planning on roadmaps in dynamic environments. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 4253–4258.
go back to reference Wu, A., & How, J. P. (2012). Guaranteed infinite horizon avoidance of unpredictable, dynamically constrained obstacles. Autonomous Robots, 32(3), 227–242.CrossRefMathSciNet Wu, A., & How, J. P. (2012). Guaranteed infinite horizon avoidance of unpredictable, dynamically constrained obstacles. Autonomous Robots, 32(3), 227–242.CrossRefMathSciNet
go back to reference Yang, J., Daoui, A., Qu, Z., Wang, J., & Hull, R. A. (2005). An optimal and real-time solution to parameterized mobile robot trajectories in the presence of moving obstacles. Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 4412–4417. Yang, J., Daoui, A., Qu, Z., Wang, J., & Hull, R. A. (2005). An optimal and real-time solution to parameterized mobile robot trajectories in the presence of moving obstacles. Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 4412–4417.
go back to reference Yang, J., Qu, Z., Wang, J., & Conrad, K. (2010). Comparison of optimal solutions to real-time path planning for a mobile vehicle. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40, 721–731.CrossRef Yang, J., Qu, Z., Wang, J., & Conrad, K. (2010). Comparison of optimal solutions to real-time path planning for a mobile vehicle. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40, 721–731.CrossRef
go back to reference Yuan, H., & Shim, T. (2011). Model based real-time collision-free motion planning for mobile robots in unknown dynamic environments. In: 14th international IEEE conference on intelligent transportation systems (ITSC), pp. 416–421. Yuan, H., & Shim, T. (2011). Model based real-time collision-free motion planning for mobile robots in unknown dynamic environments. In: 14th international IEEE conference on intelligent transportation systems (ITSC), pp. 416–421.
Metadata
Title
A suboptimal and analytical solution to mobile robot trajectory generation amidst moving obstacles
Authors
Jun Peng
Wenhao Luo
Weirong Liu
Wentao Yu
Jing Wang
Publication date
01-06-2015
Publisher
Springer US
Published in
Autonomous Robots / Issue 1/2015
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-015-9424-5

Other articles of this Issue 1/2015

Autonomous Robots 1/2015 Go to the issue