Skip to main content
Top
Published in: Polymer Science, Series A 2/2023

19-05-2023 | COMPOSITES

A Surprising Role of Ferromagnetic Ions in Poly(vinyl alcohol) Polymer Films as Novel Composites for Photo-Switches Applications

Authors: F. M. Ali, R. M. Kershi

Published in: Polymer Science, Series A | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we synthesized PVA films via casting technique and used them as a container matrix for iron ions at different valence ratios. The influence of the ratio of the Fe3+/Fe2+ ions on the structural, spectroscopic, and optical characteristics of PVA films has been evaluated through analysis of FTIR and UV‒Vis, techniques data. The FTIR results indicated the substitution of iron ions in the polymer matrix at the expense of the OH groups. The optical transmission spectra demonstrated a complete blocking in a particular UV and visible (200–474 nm) spectrum for composites of PVA-Fe3+/Fe2+ films, which is excellent for photo-switches applications. Moreover, the obtained values of the optical energy gap Eg based on Tauc and ASF methods indicate fast transformation from insulating state 4.80 eV in pure PVA film to semiconducting state 2.35 eV for PVA-20% Fe3+/Fe2+ film. The prepared composites can be candidates for signal delay devices where the calculated values of refractive indices increase from 1.75 to 2.2 by increasing the Fe3+/Fe2+ ratio from 0 to 20%, respectively, and as a result, their optical density increases and the light speed decreases through them. The impact of the iron ions additives on the electrical and dielectric properties has been studied according to the data of the two probes method and LCR bridge. The electrical characteristics results showed a decrease in both dielectric and dielectric loss factors (\(\epsilon {\kern 1pt} '\) and \(\epsilon {\kern 1pt} ''\)) with increasing frequency. The matrix of PVA film host for Fe3+/Fe2+ with a ratio equal to unity displays the highest value of \(\epsilon {\kern 1pt} '\). The measured data of the IV indicate the dominant ohmic behavior over a wide voltage range (0–400 V) due to a good transport of charge carriers through the prepared samples and the highest value of electrical current has been found through the PVA film sample with Fe3+/Fe2+ ratio equal to unity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference K. Vasanth Kumar, V. Raja, R. Padma Suvarna, Y. Madhava Kumar, and D. Subba Reddy, Int. J. Rec. Sci. Res. 9, 25600 (2018). K. Vasanth Kumar, V. Raja, R. Padma Suvarna, Y. Madhava Kumar, and D. Subba Reddy, Int. J. Rec. Sci. Res. 9, 25600 (2018).
3.
go back to reference F. M. Ali, J. Mol. Struct. 1189, 352 (2019). F. M. Ali, J. Mol. Struct. 1189, 352 (2019).
4.
go back to reference O. Pravakar, T. Siddaiah, P. V. R. K. Ramacharyulu, N. O. Gopal, C. Ramu, and H. Nagabhushana, J. Sci.: Adv. Mater. Devices, 4 (2), 267 (2019). O. Pravakar, T. Siddaiah, P. V. R. K. Ramacharyulu, N. O. Gopal, C. Ramu, and H. Nagabhushana, J. Sci.: Adv. Mater. Devices, 4 (2), 267 (2019).
5.
go back to reference G. Thejas Urs, R. V. Hurkadli, R. V. Basavaraj, M. Niranjana, A. Manjunath, and R. Somashekar, Prog. Crystal Growth Charact. Mater. 60 (3–4), 87 (2014). G. Thejas Urs, R. V. Hurkadli, R. V. Basavaraj, M. Niranjana, A. Manjunath, and R. Somashekar, Prog. Crystal Growth Charact. Mater. 60 (3–4), 87 (2014).
6.
go back to reference I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P. K. Sharma, and A. Sharma, Mater. Chem. Phys. 139 (2–3), 802 (2013). I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P. K. Sharma, and A. Sharma, Mater. Chem. Phys. 139 (2–3), 802 (2013).
7.
go back to reference F. M. Ali, I. Ashraf, and S. M. Alqahtani, Phys. B: Condens. Matter 527, 24 (2017). F. M. Ali, I. Ashraf, and S. M. Alqahtani, Phys. B: Condens. Matter 527, 24 (2017).
8.
go back to reference S. Yedurkar, C. Maurya, and P. Mahanwar, Open J. Synt. Theory Appl. 05 (01), 1 (2016). S. Yedurkar, C. Maurya, and P. Mahanwar, Open J. Synt. Theory Appl. 05 (01), 1 (2016).
9.
go back to reference Y. A. El-badry and K. H. Mahmoud, Spectrochim. Acta Part A 219, 307 (2019). Y. A. El-badry and K. H. Mahmoud, Spectrochim. Acta Part A 219, 307 (2019).
10.
go back to reference A. E. Tarabiah, Integr. Med. Res. 8 (1), 904 (2018). A. E. Tarabiah, Integr. Med. Res. 8 (1), 904 (2018).
11.
go back to reference H. Tan, S. Xie, N. Li, C. Tong, L. Xu, J. Xu, and C. Zhang, Mater. Express 8 (2), 141 (2018). H. Tan, S. Xie, N. Li, C. Tong, L. Xu, J. Xu, and C. Zhang, Mater. Express 8 (2), 141 (2018).
12.
go back to reference R. P. Chahal, S. Mahendia, A. K. Tomar, and S. Kumar, Appl. Surf. Sci. 343, 160 (2015). R. P. Chahal, S. Mahendia, A. K. Tomar, and S. Kumar, Appl. Surf. Sci. 343, 160 (2015).
13.
14.
go back to reference M. Mizanur, R. Khan, M. Akter, K. Amin, and M. Younus, J. Polym. Environ. 26 (8), 3371 (2018). M. Mizanur, R. Khan, M. Akter, K. Amin, and M. Younus, J. Polym. Environ. 26 (8), 3371 (2018).
15.
go back to reference J. P. Sharma and P. Kumar, Int. J. Hor. Phys. 2 (2), 95 (2016). J. P. Sharma and P. Kumar, Int. J. Hor. Phys. 2 (2), 95 (2016).
17.
go back to reference S. Bishnoi and S. Chawla, Rev. Mex. de Trastor. Aliment. 15 (2), 102 (2017). S. Bishnoi and S. Chawla, Rev. Mex. de Trastor. Aliment. 15 (2), 102 (2017).
18.
go back to reference S. F. Bdewi, O. G. Abdullah, B. K. Aziz, and A. A. R. Mutar, J. Inorg. Organomet. Polym. Mater. 26 (2), 326 (2016). S. F. Bdewi, O. G. Abdullah, B. K. Aziz, and A. A. R. Mutar, J. Inorg. Organomet. Polym. Mater. 26 (2), 326 (2016).
19.
go back to reference F. M. Ali and J. Inorg. Organomet. Polym. Mater. 30 (7), 2418 (2020). F. M. Ali and J. Inorg. Organomet. Polym. Mater. 30 (7), 2418 (2020).
20.
go back to reference S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, J. Mater. Sci.: Mater. Electron. 26 (10), 8022 (2015). S. B. Aziz, H. M. Ahmed, A. M. Hussein, A. B. Fathulla, R. M. Wsw, and R. T. Hussein, J. Mater. Sci.: Mater. Electron. 26 (10), 8022 (2015).
21.
go back to reference M. Abdelaziz, Phys. B: Condens. Matter 406 (6–7), 1300 (2011). M. Abdelaziz, Phys. B: Condens. Matter 406 (6–7), 1300 (2011).
22.
go back to reference N. Khalifa, A. Souissi, I. Attar, M. Daoudi, B. Yakoubi, and R. Chtourou, Opt. Laser Technol. 54, 335 (2013). N. Khalifa, A. Souissi, I. Attar, M. Daoudi, B. Yakoubi, and R. Chtourou, Opt. Laser Technol. 54, 335 (2013).
23.
go back to reference N. A. El-Shishtawi, M. A. Hamada, and E. A. Gomaa, Phys. Chem. 1 (1), 14 (2012). N. A. El-Shishtawi, M. A. Hamada, and E. A. Gomaa, Phys. Chem. 1 (1), 14 (2012).
24.
go back to reference A. Tawansi, A. El-Khodary, and M. M. Abdelnaby, Curr. Appl. Phys. 5 (6), 572 (2005). A. Tawansi, A. El-Khodary, and M. M. Abdelnaby, Curr. Appl. Phys. 5 (6), 572 (2005).
25.
go back to reference F. M. Ali and R. M. Kershi, J. Mater. Sci.: Mater. Electron. 31, 2557 (2020). F. M. Ali and R. M. Kershi, J. Mater. Sci.: Mater. Electron. 31, 2557 (2020).
26.
go back to reference F. M. Ali, R. M. Kershi, M. A. Sayed, and Y. M. AbouDeif, Phys. B: Condens. Matter 538, 160 (2018). F. M. Ali, R. M. Kershi, M. A. Sayed, and Y. M. AbouDeif, Phys. B: Condens. Matter 538, 160 (2018).
27.
go back to reference P. S. Anantha and K. Hariharan, Solid State Ion. 176, 155 (2005). P. S. Anantha and K. Hariharan, Solid State Ion. 176, 155 (2005).
28.
go back to reference P. Taylor, F. Zhang, J. Wu, D. Kang, and H. Zhang, J. Biomater. Sci. 24 (12), 37 (2013). P. Taylor, F. Zhang, J. Wu, D. Kang, and H. Zhang, J. Biomater. Sci. 24 (12), 37 (2013).
29.
go back to reference O. Pravakar, T. Siddaiah, N. O. Gopal, and C. Ramu, Int. J. Sci. Res. Phys. Appl. Sci. 6 (6), 80 (2018). O. Pravakar, T. Siddaiah, N. O. Gopal, and C. Ramu, Int. J. Sci. Res. Phys. Appl. Sci. 6 (6), 80 (2018).
30.
go back to reference S. S. Nafee, T. A. Hamdalla, and S. A. Shaheen, Phase Transitions 1594, 439 (2017). S. S. Nafee, T. A. Hamdalla, and S. A. Shaheen, Phase Transitions 1594, 439 (2017).
31.
go back to reference M. A. Saadiah, D. Zhang, Y. Nagao, S. K. Muzakir, and A. S. Samsudin, J. Non-Cryst. Solids 511, 201 (2018). M. A. Saadiah, D. Zhang, Y. Nagao, S. K. Muzakir, and A. S. Samsudin, J. Non-Cryst. Solids 511, 201 (2018).
32.
go back to reference I. S. Elashmawi and A. A. Menazea, J. Mater. Res. Technol. 8 (2), 1944 (2019). I. S. Elashmawi and A. A. Menazea, J. Mater. Res. Technol. 8 (2), 1944 (2019).
33.
34.
go back to reference O. G. Abdullah, S. B. Aziz, and M. A. Rasheed, Results Phys. 6, 1103 (2016). O. G. Abdullah, S. B. Aziz, and M. A. Rasheed, Results Phys. 6, 1103 (2016).
35.
go back to reference G. Mohammed, A. M. El Sayed, and W. M. Morsi, J. Phys. Chem. Solids 115, 238 (2017). G. Mohammed, A. M. El Sayed, and W. M. Morsi, J. Phys. Chem. Solids 115, 238 (2017).
36.
go back to reference N. Khalifa, A. Souissi, I. Attar, M. Daoudi, B. Yakoubi, and R. Chtourou, Opt. Laser Technol. 54, 335 (2013). N. Khalifa, A. Souissi, I. Attar, M. Daoudi, B. Yakoubi, and R. Chtourou, Opt. Laser Technol. 54, 335 (2013).
37.
go back to reference A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, Appl. Surf. Sci. 254, 412 (2007). A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, Appl. Surf. Sci. 254, 412 (2007).
38.
go back to reference Y. S. Rammah, A. S. Abouhaswa A. H. Salama, and R. El-Mallawany, J. Theor. Appl. Phys. 13, 155 (2019). Y. S. Rammah, A. S. Abouhaswa A. H. Salama, and R. El-Mallawany, J. Theor. Appl. Phys. 13, 155 (2019).
39.
go back to reference K. M. Kaky, G. Lakshminarayana, S. O. Baki, I. V. Kityk, and M. A. Mahdi, Results Phys. 7, 166 (2016). K. M. Kaky, G. Lakshminarayana, S. O. Baki, I. V. Kityk, and M. A. Mahdi, Results Phys. 7, 166 (2016).
40.
go back to reference S. Mahendia, A. K. Tomar, P. K. Goyal, and S. Kumar, J. Appl. Phys. 113, 073103 (2013). S. Mahendia, A. K. Tomar, P. K. Goyal, and S. Kumar, J. Appl. Phys. 113, 073103 (2013).
41.
42.
go back to reference F. M. Ali, R. M. Kershi, M. A. Sayed, and Y. M. AbouDeif, Phys. B: Condens. Matter 538, 160 (2018). F. M. Ali, R. M. Kershi, M. A. Sayed, and Y. M. AbouDeif, Phys. B: Condens. Matter 538, 160 (2018).
43.
go back to reference A. Manjunath, T. Deepa, N. K. Supreetha, and M. Irfan, Adv. Mater. Phys. Chem. 5 (8), 295 (2015). A. Manjunath, T. Deepa, N. K. Supreetha, and M. Irfan, Adv. Mater. Phys. Chem. 5 (8), 295 (2015).
44.
go back to reference B. M. Baraker and B. Lobo, Bull. Mater. Sci. 42 (1), 18 (2019). B. M. Baraker and B. Lobo, Bull. Mater. Sci. 42 (1), 18 (2019).
45.
go back to reference G. V. Kumar and R. Chandramani, Appl. Surf. Sci. 255 (15), 7047 (2009). G. V. Kumar and R. Chandramani, Appl. Surf. Sci. 255 (15), 7047 (2009).
Metadata
Title
A Surprising Role of Ferromagnetic Ions in Poly(vinyl alcohol) Polymer Films as Novel Composites for Photo-Switches Applications
Authors
F. M. Ali
R. M. Kershi
Publication date
19-05-2023
Publisher
Pleiades Publishing
Published in
Polymer Science, Series A / Issue 2/2023
Print ISSN: 0965-545X
Electronic ISSN: 1555-6107
DOI
https://doi.org/10.1134/S0965545X23700852

Other articles of this Issue 2/2023

Polymer Science, Series A 2/2023 Go to the issue

Premium Partners