Skip to main content
Top

2023 | OriginalPaper | Chapter

A Survey of Few-Shot Learning for Image Classification of Aerial Objects

Authors : Haoxin Cai, Xuanyue Zhu, Pengcheng Wen, Wei Han, Le Wu

Published in: Proceedings of the 10th Chinese Society of Aeronautics and Astronautics Youth Forum

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aircraft has high requirements for effective detection and rapid support in different situations, and in this process, the image classification of aerial objects plays a very important role. In view of the situation that many tasks in the field of image classification of aerial objects cannot get enough samples to learn, it is necessary to study few-shot learning technology, which is mainly divided into three aspects: data based, model based and optimization based. Considering the advantages and disadvantages of various few-shot learning methods and their contribution to the accuracy of few-shot image classification, the developing trend of few-shot learning technology in the field of image classification of aerial objects is summarized. The three research directions of data, model and optimization are not independent of each other, and it is the mainstream to combine them. The application of few-shot learning technology in aviation can realize the deployment of high-precision and high-stability models for aerial tasks with little available data, and reduce the high cost of data tags to a certain extent, which is meaningful. It is hoped that this paper can provide ideas for the application of few-shot learning in the field of aerial image, and then solve practical problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1) (2019) Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1) (2019)
2.
go back to reference Wang, Y., Hebert, M.H.: Learning from small sample sets by combining unsupervised meta-training with CNNs. 2016 Wang, Y., Hebert, M.H.: Learning from small sample sets by combining unsupervised meta-training with CNNs. 2016
3.
go back to reference Boney, R., Ilin, A.: Semi-supervised few-shot learning with MAML (2018) Boney, R., Ilin, A.: Semi-supervised few-shot learning with MAML (2018)
4.
go back to reference Ren†, M., Triantafillou∗†, E., Ravi∗§, S., et al.: Meta-learning for semi-supervised few-shot classification[J] (2018) Ren†, M., Triantafillou∗†, E., Ravi∗§, S., et al.: Meta-learning for semi-supervised few-shot classification[J] (2018)
5.
go back to reference Liu, Y, Lee, J., Park, M., et al.: Transductive propagation network for few-shot learning[J] (2018) Liu, Y, Lee, J., Park, M., et al.: Transductive propagation network for few-shot learning[J] (2018)
6.
go back to reference Hou, R., Chang, H., Ma, B., et al.: Cross attention network for few-shot classification[J] (2019) Hou, R., Chang, H., Ma, B., et al.: Cross attention network for few-shot classification[J] (2019)
7.
go back to reference Xie, Q., Dai, Z., Hovy, E., et al.: Unsupervised data augmentation for consistency training[J] (2019) Xie, Q., Dai, Z., Hovy, E., et al.: Unsupervised data augmentation for consistency training[J] (2019)
8.
go back to reference Bateni, P., Barber, J., Goyal, R., et al.: Beyond simple meta-learning: multi-purpose models for multi-domain, active and continual few-shot learning[J]. (2022) Bateni, P., Barber, J., Goyal, R., et al.: Beyond simple meta-learning: multi-purpose models for multi-domain, active and continual few-shot learning[J]. (2022)
9.
go back to reference Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative Adversarial Nets. MIT Press (2014) Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative Adversarial Nets. MIT Press (2014)
10.
go back to reference Mehrotra, A., Dukkipati, A.: Generative adversarial residual pairwise networks for one shot learning[J] (2017) Mehrotra, A., Dukkipati, A.: Generative adversarial residual pairwise networks for one shot learning[J] (2017)
11.
go back to reference Ali-Gombe, A.: Few-shot classifier GAN. [C]. In: 2018 International Joint Conference on Neural Networks (IJCNN) (2018) Ali-Gombe, A.: Few-shot classifier GAN. [C]. In: 2018 International Joint Conference on Neural Networks (IJCNN) (2018)
12.
go back to reference Xian, Y., Sharma, S., Schiele, B., et al.: F-VAEGAN-D2: a feature generating framework for any-shot learning[J]. IEEE (2019) Xian, Y., Sharma, S., Schiele, B., et al.: F-VAEGAN-D2: a feature generating framework for any-shot learning[J]. IEEE (2019)
13.
go back to reference Nguyen, K., Todorovic, S.: A self-supervised GAN for unsupervised few-shot object recognition[C]. In: 2020 25th International Conference on Pattern Recognition (ICPR) (2021) Nguyen, K., Todorovic, S.: A self-supervised GAN for unsupervised few-shot object recognition[C]. In: 2020 25th International Conference on Pattern Recognition (ICPR) (2021)
14.
go back to reference LoFGAN: Fusing local representations for few-shot image generation LoFGAN: Fusing local representations for few-shot image generation
15.
go back to reference Pan, H., Yang Xiaogang, L., Ruitao, C.Z., Chuang, L.: Data augmentation method of infrared ship target based on spatial association[J]. Infrared Laser Eng. 50(12), 20210281 (2021) Pan, H., Yang Xiaogang, L., Ruitao, C.Z., Chuang, L.: Data augmentation method of infrared ship target based on spatial association[J]. Infrared Laser Eng. 50(12), 20210281 (2021)
16.
go back to reference Liu, B., Zhu, Y., Song, K., et al.: Towards faster and stabilized GAN training for high-fidelity few-shot image synthesis[J]. 2021 Liu, B., Zhu, Y., Song, K., et al.: Towards faster and stabilized GAN training for high-fidelity few-shot image synthesis[J]. 2021
17.
go back to reference Chopra, S., Had Sell R., Lecun, Y.: Learning a similarity metric discriminatively, with application to face verification[C]. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE (2005) Chopra, S., Had Sell R., Lecun, Y.: Learning a similarity metric discriminatively, with application to face verification[C]. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE (2005)
18.
go back to reference Wang, J., Zhu, Z., Li, J., et al.: Attention based siamese networks for few-shot learning[C]. In: 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). IEEE (2019) Wang, J., Zhu, Z., Li, J., et al.: Attention based siamese networks for few-shot learning[C]. In: 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). IEEE (2019)
19.
go back to reference Jadon, S., Srinivasan, A.A.: Siamese networks for one shot learning using kernel-based activation functions[M] (2019) Jadon, S., Srinivasan, A.A.: Siamese networks for one shot learning using kernel-based activation functions[M] (2019)
20.
go back to reference Shao, H., Zhong, D., Du, X., et al.: Few-shot learning for palmprint recognition via meta-siamese network[J]. IEEE Trans. Instrum. Meas. 70, 1–12 (2021) Shao, H., Zhong, D., Du, X., et al.: Few-shot learning for palmprint recognition via meta-siamese network[J]. IEEE Trans. Instrum. Meas. 70, 1–12 (2021)
21.
go back to reference Vinyals, O., Blundell, C., Lillicrap, T., et al.: Matching networks for one shot learning[J] (2016) Vinyals, O., Blundell, C., Lillicrap, T., et al.: Matching networks for one shot learning[J] (2016)
22.
go back to reference Mai, S., Hu, H., Xu, J.: Attentive matching network for few-shot learning[J]. Comput. Vis. Image Underst. 187(Oct.), 102781.1–102781.13 (2019) Mai, S., Hu, H., Xu, J.: Attentive matching network for few-shot learning[J]. Comput. Vis. Image Underst. 187(Oct.), 102781.1–102781.13 (2019)
23.
go back to reference Li, H., Dong, W., Mei, X., et al.: LGM-Net: learning to generate matching networks for few-shot learning[J] (2019) Li, H., Dong, W., Mei, X., et al.: LGM-Net: learning to generate matching networks for few-shot learning[J] (2019)
24.
go back to reference Chen, M., Wang, X., Luo, H., et al.: Learning to focus:cascaded feature matching network for few-shot image recognition[J]. Sci. China Inf. Sci. 64(9), 86–98 (2021)CrossRef Chen, M., Wang, X., Luo, H., et al.: Learning to focus:cascaded feature matching network for few-shot image recognition[J]. Sci. China Inf. Sci. 64(9), 86–98 (2021)CrossRef
25.
go back to reference Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning[J] (2017) Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning[J] (2017)
26.
go back to reference Fort, S.: Gaussian prototypical networks for few-shot learning on omniglot[J] (2017) Fort, S.: Gaussian prototypical networks for few-shot learning on omniglot[J] (2017)
27.
go back to reference Wang, J., Zhai, Y.: Prototypical siamese networks for few-shot learning[C]. In: 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). IEEE (2020) Wang, J., Zhai, Y.: Prototypical siamese networks for few-shot learning[C]. In: 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). IEEE (2020)
28.
go back to reference Lim, J.Y., Lim, K.M., Ooi, S.Y., et al.: Efficient-prototypicalnet with self knowledge distillation for few-shot learning[J]. Neurocomputing 459 (2021) Lim, J.Y., Lim, K.M., Ooi, S.Y., et al.: Efficient-prototypicalnet with self knowledge distillation for few-shot learning[J]. Neurocomputing 459 (2021)
29.
go back to reference Sung, F., Yang, Y., Zhang, L., et al.: Learning to compare: relation network for few-shot learning[J] (2017) Sung, F., Yang, Y., Zhang, L., et al.: Learning to compare: relation network for few-shot learning[J] (2017)
30.
go back to reference Hui, B., Zhu, P., Hu, Q., et al.: Self-attention relation network for few-shot learning[C]. In: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE (2019) Hui, B., Zhu, P., Hu, Q., et al.: Self-attention relation network for few-shot learning[C]. In: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE (2019)
31.
go back to reference Ashrafi, I., Mohammad, M., Mauree, A.S., et al.: Attention guided relation network for few-shot image classification[C]. In: ICCCM (2019) Ashrafi, I., Mohammad, M., Mauree, A.S., et al.: Attention guided relation network for few-shot image classification[C]. In: ICCCM (2019)
32.
go back to reference Abdelaziz, M., Zhang, Z.: Multi-scale kronecker-product relation networks for few-shot learning[J]. Multimed. Tools Appl. 81(5), 6703–6722 (2022)CrossRef Abdelaziz, M., Zhang, Z.: Multi-scale kronecker-product relation networks for few-shot learning[J]. Multimed. Tools Appl. 81(5), 6703–6722 (2022)CrossRef
33.
go back to reference Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks[J] (2017) Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks[J] (2017)
34.
go back to reference Li, Z., Zhou, F., Fei, C., et al.: Meta-SGD: learning to learn quickly for few-shot learning[J] (2017) Li, Z., Zhou, F., Fei, C., et al.: Meta-SGD: learning to learn quickly for few-shot learning[J] (2017)
35.
go back to reference Jamal, M.A., Qi, G.J., Shah, M.: Task-agnostic meta-learning for few-shot learning[J] (2018) Jamal, M.A., Qi, G.J., Shah, M.: Task-agnostic meta-learning for few-shot learning[J] (2018)
36.
go back to reference Xu, H., Wang, J., Li, H., et al.: Unsupervised meta-learning for few-shot learning[J]. Pattern Recogn. 116(6), 107951 (2021)CrossRef Xu, H., Wang, J., Li, H., et al.: Unsupervised meta-learning for few-shot learning[J]. Pattern Recogn. 116(6), 107951 (2021)CrossRef
37.
go back to reference Cao, K., Brbic, M., Leskovec, J.: Concept learners for few-shot learning[J]. ICLR (2021) Cao, K., Brbic, M., Leskovec, J.: Concept learners for few-shot learning[J]. ICLR (2021)
38.
go back to reference Lee, Y., Choi, S.: Gradient-based meta-learning with learned layerwise metric and subspace[J] (2018) Lee, Y., Choi, S.: Gradient-based meta-learning with learned layerwise metric and subspace[J] (2018)
39.
go back to reference Kim, J., Choi, Y., Cha, M., et al.: Auto-meta: automated gradient based meta learner search[J] (2018) Kim, J., Choi, Y., Cha, M., et al.: Auto-meta: automated gradient based meta learner search[J] (2018)
40.
go back to reference Dove, H.S., Schwartz, E., Xue, C., et al.: MetAdapt: meta-learned task-adaptive architecture for few-shot classification[J] (2019) Dove, H.S., Schwartz, E., Xue, C., et al.: MetAdapt: meta-learned task-adaptive architecture for few-shot classification[J] (2019)
41.
go back to reference Elsken, T., Staffler, B., Metzen, J.H., et al.: Meta-learning of neural architectures for few-shot learning[C]. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2020) Elsken, T., Staffler, B., Metzen, J.H., et al.: Meta-learning of neural architectures for few-shot learning[C]. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2020)
42.
go back to reference Larochelle, S.: Optimization as a model for few-shot learning Larochelle, S.: Optimization as a model for few-shot learning
43.
go back to reference Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML[J] (2018) Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML[J] (2018)
44.
go back to reference Rusu, A.A., Rao, D., Sygnowski, J., et al.: Meta-learning with latent embedding optimization[J] (2018) Rusu, A.A., Rao, D., Sygnowski, J., et al.: Meta-learning with latent embedding optimization[J] (2018)
45.
go back to reference Bertinetto, L., Henriques, J.F., Torr, P., et al.: Meta-learning with differentiable closed-form solvers[J] (2018) Bertinetto, L., Henriques, J.F., Torr, P., et al.: Meta-learning with differentiable closed-form solvers[J] (2018)
46.
go back to reference Zhang, B, Li, X, Ye, Y., et al.: MetaNODE: prototype optimization as a neural ODE for few-shot learning[J] (2021) Zhang, B, Li, X, Ye, Y., et al.: MetaNODE: prototype optimization as a neural ODE for few-shot learning[J] (2021)
47.
go back to reference Tian, P., Gao, Y.: Improving meta-learning model via meta-contrastive loss[J]. Front. Comput. Sci. 16(5), 1–7 (2022)CrossRef Tian, P., Gao, Y.: Improving meta-learning model via meta-contrastive loss[J]. Front. Comput. Sci. 16(5), 1–7 (2022)CrossRef
Metadata
Title
A Survey of Few-Shot Learning for Image Classification of Aerial Objects
Authors
Haoxin Cai
Xuanyue Zhu
Pengcheng Wen
Wei Han
Le Wu
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7652-0_50

Premium Partner