Skip to main content
Top
Published in: Quantum Information Processing 3/2024

01-03-2024

A survey on quantum data mining algorithms: challenges, advances and future directions

Authors: Han Qi, Liyuan Wang, Changqing Gong, Abdullah Gani

Published in: Quantum Information Processing | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Data mining has reached a state that is difficult to break through, while the scale of data is growing rapidly, due to the lack of traditional computing power and limited data storage space. Efficient and accurate extraction of valuable information from massive data has become a challenge. Researchers have combined quantum computing with data mining to address this problem, hence the concept of quantum data mining has emerged. The fundamental tenets of quantum physics are adhered to for information transmission and computing operations in quantum data mining, which use the states of minuscule particles to represent and process information. Quantum data mining are based on the characteristics of quantum computing, such as superposition and entanglement, which make the ability of computational and information extraction effectively improved. The paper discusses and summarizes the relevant literature on quantum data mining in recent 3 years. After introducing relevant basic concepts of quantum computing, quantum data mining is presented in five aspects: quantum data classification, quantum data clustering, quantum dimensionality reduction, quantum association rules, quantum linear regression, and quantum causal analysis. These approaches, based on quantum computing, offer new perspectives and tools for handling complex data mining tasks. In conclusion, the development of quantum data mining is promising and crucial to overcome the difficulties associated with large-scale data mining.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Junjie, J.: Research on data mining algorithms based on association rules. Ph.D. thesis, Northwest Normal University Junjie, J.: Research on data mining algorithms based on association rules. Ph.D. thesis, Northwest Normal University
2.
go back to reference Wen, Z.: Application of data mining in stock analysis. Ph.D. thesis, Fudan University Wen, Z.: Application of data mining in stock analysis. Ph.D. thesis, Fudan University
3.
go back to reference Xiaofeng, G.: Research on quantum digital image recognition and visualization Masterś thesis, Huazhong University of Science and Technology (2020) Xiaofeng, G.: Research on quantum digital image recognition and visualization Masterś thesis, Huazhong University of Science and Technology (2020)
4.
go back to reference Shijie, W., Tao, W., Dong, R., Guilu, L.: Some advances in quantum algorithms. Sci. China Inf. Sci. 47, 1277–1299 (2017) Shijie, W., Tao, W., Dong, R., Guilu, L.: Some advances in quantum algorithms. Sci. China Inf. Sci. 47, 1277–1299 (2017)
5.
go back to reference Wang, Y.: Quantum computation and quantum information. Inst. Math. Stat. 3 (2012) Wang, Y.: Quantum computation and quantum information. Inst. Math. Stat. 3 (2012)
6.
go back to reference Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)MathSciNet Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)MathSciNet
7.
go back to reference Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994) Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)
8.
go back to reference Grover, L.K.: A fast quantum mechanical algorithm for database search. Phys. Rev. Lett. 79 (1997) Grover, L.K.: A fast quantum mechanical algorithm for database search. Phys. Rev. Lett. 79 (1997)
9.
go back to reference Wittek, P.: Quantum machine learning: what quantum computing means to data mining. Academic Press (2014) Wittek, P.: Quantum machine learning: what quantum computing means to data mining. Academic Press (2014)
10.
go back to reference Adcock, J., Allen, E., Day, M., Frick, S., Hinchliff, J., Johnson, M., Morley-Short, S., Pallister, S., Price, A., Stanisic, S.: Advances in quantum machine learning. arXiv preprint arXiv:1512.02900 (2015) Adcock, J., Allen, E., Day, M., Frick, S., Hinchliff, J., Johnson, M., Morley-Short, S., Pallister, S., Price, A., Stanisic, S.: Advances in quantum machine learning. arXiv preprint arXiv:​1512.​02900 (2015)
11.
go back to reference Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)ADS Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)ADS
12.
go back to reference Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502–150502 (2009)ADSMathSciNet Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502–150502 (2009)ADSMathSciNet
13.
go back to reference Ambainis, A.: Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458 (2010) Ambainis, A.: Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations. arXiv preprint arXiv:​1010.​4458 (2010)
14.
go back to reference Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), (2017) Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), (2017)
15.
go back to reference Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120(5), 050502.1–050502.5 (2018) Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120(5), 050502.1–050502.5 (2018)
16.
go back to reference Pan, J., Cao, Y., Yao, X., Li, Z., Ju, C., Chen, H., Peng, X., Kais, S., Du, J.: Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 89(2), 1150–1154 (2014) Pan, J., Cao, Y., Yao, X., Li, Z., Ju, C., Chen, H., Peng, X., Kais, S., Du, J.: Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 89(2), 1150–1154 (2014)
17.
go back to reference Zheng, Y., Song, C., Chen, M.C., Xia, B., Liu, W., Guo, Q., Zhang, L., Xu, D., Deng, H., Huang, K.: Solving systems of linear equations with a superconducting quantum processor. Phys. Rev. Lett. 118(21), 210504 (2017)ADS Zheng, Y., Song, C., Chen, M.C., Xia, B., Liu, W., Guo, Q., Zhang, L., Xu, D., Deng, H., Huang, K.: Solving systems of linear equations with a superconducting quantum processor. Phys. Rev. Lett. 118(21), 210504 (2017)ADS
18.
go back to reference Wen, J., Kong, X., Wei, S., Wang, B., Xin, T., Long, G.: Experimental realization of quantum algorithms for a linear system inspired by adiabatic quantum computing. Phys. Rev. A 99(1), 012320 (2019) Wen, J., Kong, X., Wei, S., Wang, B., Xin, T., Long, G.: Experimental realization of quantum algorithms for a linear system inspired by adiabatic quantum computing. Phys. Rev. A 99(1), 012320 (2019)
19.
go back to reference Anguita, D., Ridella, S., Rivieccio, F., Zunino, R.: Quantum optimization for training support vector machines. Neural Netw. 16(5–6), 763–770 (2003) Anguita, D., Ridella, S., Rivieccio, F., Zunino, R.: Quantum optimization for training support vector machines. Neural Netw. 16(5–6), 763–770 (2003)
20.
go back to reference Wiebe, N., Kapoor, A., Svore, K.: Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. arXiv preprint arXiv:1401.2142 (2014) Wiebe, N., Kapoor, A., Svore, K.: Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. arXiv preprint arXiv:​1401.​2142 (2014)
21.
go back to reference Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big feature and big data classification. Phys. Rev. Lett. 113(13), 130503 (2013) Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big feature and big data classification. Phys. Rev. Lett. 113(13), 130503 (2013)
22.
go back to reference Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114(14), 140504 (2015)ADS Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114(14), 140504 (2015)ADS
23.
go back to reference Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. Eprint Arxiv (2013) Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. Eprint Arxiv (2013)
24.
go back to reference Aiemeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)MathSciNet Aiemeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)MathSciNet
25.
go back to reference Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 108–113 (2014) Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 108–113 (2014)
26.
go back to reference Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18, 073011 (2015) Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18, 073011 (2015)
27.
go back to reference Yu, C.H.: Experimental implementation of quantum algorithm for association rules mining. IEEE J. Emerg. Sel. Topics Circuits Syst. 12(3), 676–684 (2022) Yu, C.H.: Experimental implementation of quantum algorithm for association rules mining. IEEE J. Emerg. Sel. Topics Circuits Syst. 12(3), 676–684 (2022)
28.
go back to reference Cai, X.D., Wu, D., Su, Z.E., Chen, M.C., Wang, X.L., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Entanglement-based machine learning on a quantum computer (2014) Cai, X.D., Wu, D., Su, Z.E., Chen, M.C., Wang, X.L., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Entanglement-based machine learning on a quantum computer (2014)
29.
go back to reference Shuyun, Z.: Application of data mining in channel preference user identification. Ph.D. thesis, Zhejiang Gongshang University (2017) Shuyun, Z.: Application of data mining in channel preference user identification. Ph.D. thesis, Zhejiang Gongshang University (2017)
30.
go back to reference Servedio, R.A., Gortler, S.J.: Equivalences and separations between quantum and classical learnability. SIAM J. Comput. 33(5), 1067–1092 (2004)MathSciNet Servedio, R.A., Gortler, S.J.: Equivalences and separations between quantum and classical learnability. SIAM J. Comput. 33(5), 1067–1092 (2004)MathSciNet
31.
go back to reference Servedio, R.A., Gortler, S.J.: Quantum versus classical learnability. IEEE Computer Society (2001) Servedio, R.A., Gortler, S.J.: Quantum versus classical learnability. IEEE Computer Society (2001)
32.
go back to reference Servedio, R.A.: Separating quantum and classical learning. In: International Colloquium on Automata, Languages, and Programming, pp. 1065–1080. Springer, Berlin (2001) Servedio, R.A.: Separating quantum and classical learning. In: International Colloquium on Automata, Languages, and Programming, pp. 1065–1080. Springer, Berlin (2001)
33.
go back to reference Atici, A., Servedio, R.A.: Improved bounds on quantum learning algorithms. Quantum Inf. Process. 4(5), 355–386 (2005)MathSciNet Atici, A., Servedio, R.A.: Improved bounds on quantum learning algorithms. Quantum Inf. Process. 4(5), 355–386 (2005)MathSciNet
34.
go back to reference Lomonaco, S.J., Jr., Brandt, H.E.: Quantum computation and quantum information. AMS Contemp. Math. 305, 53–74 (2002)MathSciNet Lomonaco, S.J., Jr., Brandt, H.E.: Quantum computation and quantum information. AMS Contemp. Math. 305, 53–74 (2002)MathSciNet
35.
go back to reference Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)ADS Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)ADS
36.
go back to reference Wiebe, N., Kapoor, A., Svore, K.: Quantum nearest-neighbor algorithms for machine learning. Eprint Arxiv (2015) Wiebe, N., Kapoor, A., Svore, K.: Quantum nearest-neighbor algorithms for machine learning. Eprint Arxiv (2015)
37.
go back to reference Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum computing for pattern classification. In: Pacific Rim International Conference on Artificial Intelligence (2014) Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum computing for pattern classification. In: Pacific Rim International Conference on Artificial Intelligence (2014)
38.
go back to reference Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(12), 1818–1831 (2014) Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(12), 1818–1831 (2014)
39.
go back to reference Perkowski, M., Lukac, M., Shah, D., Kameyama, M.: Synthesis of quantum circuits in linear nearest neighbor model using positive Davio lattices. Facta universitatis Ser. Electron. Energet. 24(1), 71–87 (2011) Perkowski, M., Lukac, M., Shah, D., Kameyama, M.: Synthesis of quantum circuits in linear nearest neighbor model using positive Davio lattices. Facta universitatis Ser. Electron. Energet. 24(1), 71–87 (2011)
40.
go back to reference Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Springer US, no. 3 (2011) Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Springer US, no. 3 (2011)
41.
go back to reference Wille, R., Lye, A., Drechsler, R.: Optimal swap gate insertion for nearest neighbor quantum circuits. IEEE (2014) Wille, R., Lye, A., Drechsler, R.: Optimal swap gate insertion for nearest neighbor quantum circuits. IEEE (2014)
42.
go back to reference Bhattacharjee, A., Bandyopadhyay, C., Mondal, B., Rahaman, H.: Linear nearest neighbor realization of quantum circuits using clustering and look-ahead policy. J. Circuits Syst. Comput. 29, 2050263 (2020) Bhattacharjee, A., Bandyopadhyay, C., Mondal, B., Rahaman, H.: Linear nearest neighbor realization of quantum circuits using clustering and look-ahead policy. J. Circuits Syst. Comput. 29, 2050263 (2020)
43.
go back to reference Li, J., Lin, S., Kai, Y., Guo, G.: Quantum k-nearest neighbor classification algorithm based on hamming distance. Quantum Inf. Process. 21(1), 18 (2022) Li, J., Lin, S., Kai, Y., Guo, G.: Quantum k-nearest neighbor classification algorithm based on hamming distance. Quantum Inf. Process. 21(1), 18 (2022)
44.
go back to reference Feng, C., Zhao, B., Zhou, X., Ding, X., Shan, Z.: An enhanced quantum k-nearest neighbor classification algorithm based on polar distance. Entropy 25(1), 127 (2023)ADSMathSciNet Feng, C., Zhao, B., Zhou, X., Ding, X., Shan, Z.: An enhanced quantum k-nearest neighbor classification algorithm based on polar distance. Entropy 25(1), 127 (2023)ADSMathSciNet
45.
go back to reference Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999) Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)
46.
go back to reference Yanping, G., Wenjie, Z., Zhansong, W.: Research on algorithm of least squares support vector machine. J. Tsinghua Univ. Nat. Sci. Ed. 7, 5 (2010) Yanping, G., Wenjie, Z., Zhansong, W.: Research on algorithm of least squares support vector machine. J. Tsinghua Univ. Nat. Sci. Ed. 7, 5 (2010)
47.
go back to reference Li, H., Jiang, N., Zhang, R., Wang, Z., Wang, H.: Quantum support vector machine based on gradient descent. Int. J. Theor. Phys. A J. Original Res. Rev. Theor. Phys. Related Math. Dedicated to the Unification of Physics, no. 61-3 (2022) Li, H., Jiang, N., Zhang, R., Wang, Z., Wang, H.: Quantum support vector machine based on gradient descent. Int. J. Theor. Phys. A J. Original Res. Rev. Theor. Phys. Related Math. Dedicated to the Unification of Physics, no. 61-3 (2022)
48.
go back to reference Hou, Y., Li, J., Chen, X., Li, H., Li, C., Tian, Y., Li, L., Cao, Z., Wang, N.: Quantum algorithm for help-training semi-supervised support vector machine. Quantum Inf. Process. 19(9), 278 (2020)ADSMathSciNet Hou, Y., Li, J., Chen, X., Li, H., Li, C., Tian, Y., Li, L., Cao, Z., Wang, N.: Quantum algorithm for help-training semi-supervised support vector machine. Quantum Inf. Process. 19(9), 278 (2020)ADSMathSciNet
49.
go back to reference Zhang, R., Wang, J., Jiang, N., Li, H., Wang, Z.: Quantum support vector machine based on regularized newton method. Neural Netw. 151, 376–384 (2022) Zhang, R., Wang, J., Jiang, N., Li, H., Wang, Z.: Quantum support vector machine based on regularized newton method. Neural Netw. 151, 376–384 (2022)
50.
go back to reference Huang, X., Zhang, S., Lin, C., Xia, J.: Quantum fuzzy support vector machine for binary classification. Comput. Syst. Sci. Eng. 45(3), 2783–2794 (2023) Huang, X., Zhang, S., Lin, C., Xia, J.: Quantum fuzzy support vector machine for binary classification. Comput. Syst. Sci. Eng. 45(3), 2783–2794 (2023)
51.
go back to reference Bologna, G., Hayashi, Y.: QSVM: A support vector machine for rule extraction. In: International Work-Conference on Artificial Neural Networks (2015) Bologna, G., Hayashi, Y.: QSVM: A support vector machine for rule extraction. In: International Work-Conference on Artificial Neural Networks (2015)
52.
go back to reference Li, Y., Song, L., Sun, Q., Xu, H., Li, X., Fang, Z., Yao, W.: Rolling bearing fault diagnosis based on quantum LS-SVM. EPJ Quantum Technol. 9, 1–15 (2022) Li, Y., Song, L., Sun, Q., Xu, H., Li, X., Fang, Z., Yao, W.: Rolling bearing fault diagnosis based on quantum LS-SVM. EPJ Quantum Technol. 9, 1–15 (2022)
53.
go back to reference Kak, S.C.: Quantum neural computing. Syst. Control Inf. 52(3–4), 143–160 (1995) Kak, S.C.: Quantum neural computing. Syst. Control Inf. 52(3–4), 143–160 (1995)
54.
go back to reference Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quantum Inf. Process. 13(11), 2567–2586 (2014)ADSMathSciNet Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quantum Inf. Process. 13(11), 2567–2586 (2014)ADSMathSciNet
55.
go back to reference Jianghan, Y.: Research on the structure of quantum neural networks based on quantum superposition state coding. Masterś thesis, Xidian University (2021) Jianghan, Y.: Research on the structure of quantum neural networks based on quantum superposition state coding. Masterś thesis, Xidian University (2021)
56.
go back to reference Kak, S.C.: Quantum neural computing. Syst. Control Inf. 52(3–4), 143–160 (1995) Kak, S.C.: Quantum neural computing. Syst. Control Inf. 52(3–4), 143–160 (1995)
57.
go back to reference Menneer, T., Narayanan, A.: Quantum-inspired neural networks. Department of Computer Science, University of Exeter, Exeter, United Kingdom, Technical Report, vol. 329 (1995) Menneer, T., Narayanan, A.: Quantum-inspired neural networks. Department of Computer Science, University of Exeter, Exeter, United Kingdom, Technical Report, vol. 329 (1995)
58.
go back to reference Behrman, E.C., Niemel, J., Steck, J.E., Skinner, S.R.: A quantum dot neural network. In: Proceedings of the 4th Workshop on Physics of Computation, pp. 22–24 (1996) Behrman, E.C., Niemel, J., Steck, J.E., Skinner, S.R.: A quantum dot neural network. In: Proceedings of the 4th Workshop on Physics of Computation, pp. 22–24 (1996)
59.
go back to reference Kouda, N., Matsui, N., Nishimura, H., Peper, F.: Qubit neural network and its learning efficiency. Neural Computing & Applications 14(2), 114–121 (2005) Kouda, N., Matsui, N., Nishimura, H., Peper, F.: Qubit neural network and its learning efficiency. Neural Computing & Applications 14(2), 114–121 (2005)
60.
go back to reference Matsui, N., Takai, M., Nishimura, H.: A network model based on qubitlike neuron corresponding to quantum circuit. Electron. Commun. Jpn. (Part III Fundam. Electron. Sci.) 83(10), 67–73 (2000) Matsui, N., Takai, M., Nishimura, H.: A network model based on qubitlike neuron corresponding to quantum circuit. Electron. Commun. Jpn. (Part III Fundam. Electron. Sci.) 83(10), 67–73 (2000)
61.
go back to reference Maeda, M., Suenaga, M., Miyajima, H.: A Learning Model in Qubit Neuron According to Quantum Circuit. Springer, Berlin (2005) Maeda, M., Suenaga, M., Miyajima, H.: A Learning Model in Qubit Neuron According to Quantum Circuit. Springer, Berlin (2005)
62.
go back to reference Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum walks on graphs representing the firing patterns of a quantum neural network. Phys. Rev. A. 89(3), 032333 (2014) Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum walks on graphs representing the firing patterns of a quantum neural network. Phys. Rev. A. 89(3), 032333 (2014)
63.
go back to reference Wang, Y., Wang, Y., Chen, C., Jiang, R., Huang, W.: Development of variational quantum deep neural networks for image recognition. Neurocomputing 501, 566–582 (2022) Wang, Y., Wang, Y., Chen, C., Jiang, R., Huang, W.: Development of variational quantum deep neural networks for image recognition. Neurocomputing 501, 566–582 (2022)
65.
go back to reference Gong, C., Guan, W., Gani, A., Qi, H.: Network attack detection scheme based on variational quantum neural network. J. Supercomput. 78(15), 16876–16897 (2022) Gong, C., Guan, W., Gani, A., Qi, H.: Network attack detection scheme based on variational quantum neural network. J. Supercomput. 78(15), 16876–16897 (2022)
66.
go back to reference Liu, X., Yuan, J., Xu, J., Duan, B.: Quantum k-means algorithm. J. Jilin Univ. Eng. Ed. 48(2), 6 (2018) Liu, X., Yuan, J., Xu, J., Duan, B.: Quantum k-means algorithm. J. Jilin Univ. Eng. Ed. 48(2), 6 (2018)
67.
go back to reference Aimeur, E., Zekrifa, D.M.S., Gambs, S.: Machine Learning in a Quantum World. Springer, Berlin (2006) Aimeur, E., Zekrifa, D.M.S., Gambs, S.: Machine Learning in a Quantum World. Springer, Berlin (2006)
68.
go back to reference Aïmeur, E., Brassard, G., Gambs, S.: Quantum clustering algorithms. In: Proceedings of the 24th international conference on machine learning, pp. 1–8 (2007) Aïmeur, E., Brassard, G., Gambs, S.: Quantum clustering algorithms. In: Proceedings of the 24th international conference on machine learning, pp. 1–8 (2007)
69.
go back to reference Poggiali, A., Berti, A., Bernasconi, A., Corso, G.M.D., Guidotti, R.: Clustering classical data with quantum k-means. In: Lago, U.D., Gorla, D. (eds.) Proceedings of the 23rd Italian Conference on Theoretical Computer Science, ICTCS 2022, Rome, Italy, September 7–9, 2022, vol. 3284 of CEUR Workshop Proceedings, pp. 188–200. CEUR-WS.org (2022) Poggiali, A., Berti, A., Bernasconi, A., Corso, G.M.D., Guidotti, R.: Clustering classical data with quantum k-means. In: Lago, U.D., Gorla, D. (eds.) Proceedings of the 23rd Italian Conference on Theoretical Computer Science, ICTCS 2022, Rome, Italy, September 7–9, 2022, vol. 3284 of CEUR Workshop Proceedings, pp. 188–200. CEUR-WS.org (2022)
70.
go back to reference Wu, Z., Song, T., Zhang, Y.: Quantum k-means algorithm based on Manhattan distance. Quantum Inf. Process. 21(1), 19 (2022) Wu, Z., Song, T., Zhang, Y.: Quantum k-means algorithm based on Manhattan distance. Quantum Inf. Process. 21(1), 19 (2022)
71.
go back to reference Ohno, H.: A quantum algorithm of k-means toward practical use. Quantum Inf. Process. 21(4), 146 (2022)ADSMathSciNet Ohno, H.: A quantum algorithm of k-means toward practical use. Quantum Inf. Process. 21(4), 146 (2022)ADSMathSciNet
72.
go back to reference Qu, F., Erfani, S.M., Usman, M.: Performance analysis of coreset selection for quantum implementation of k-means clustering algorithm. ArXiv arXiv:2206.07852 (2022) Qu, F., Erfani, S.M., Usman, M.: Performance analysis of coreset selection for quantum implementation of k-means clustering algorithm. ArXiv arXiv:​2206.​07852 (2022)
73.
go back to reference Hou, M., Zhang, S., Xia, J.: Quantum fuzzy k-means algorithm based on fuzzy theory. In: International conference on adaptive and intelligent systems, pp. 348–356. Springer (2022) Hou, M., Zhang, S., Xia, J.: Quantum fuzzy k-means algorithm based on fuzzy theory. In: International conference on adaptive and intelligent systems, pp. 348–356. Springer (2022)
74.
go back to reference Gong, C., Dong, Z., Gani, A., Qi, H.: Quantum k-means algorithm based on trusted server in quantum cloud computing. Quantum Inf. Process. 20 (2021) Gong, C., Dong, Z., Gani, A., Qi, H.: Quantum k-means algorithm based on trusted server in quantum cloud computing. Quantum Inf. Process. 20 (2021)
75.
go back to reference Chen, C.: Research on service recommendation privacy protection model in big data (2021) Chen, C.: Research on service recommendation privacy protection model in big data (2021)
76.
go back to reference Zhao, C., Niu, W., Yang, J.: Review of classification and clustering algorithms based on quantum computing. Microelectron. Comput. 37(8), 1–5 (2020) Zhao, C., Niu, W., Yang, J.: Review of classification and clustering algorithms based on quantum computing. Microelectron. Comput. 37(8), 1–5 (2020)
77.
go back to reference Getachew, A.T.: Quantum k-medians algorithm using parallel Euclidean distance estimator (2020) Getachew, A.T.: Quantum k-medians algorithm using parallel Euclidean distance estimator (2020)
78.
go back to reference Yue, R., Hanwu, C., Zhihao, L., Jun, Z., Wanning, Z.: Quantum principal component analysis algorithm. J. Comput. Sci. 37(3), 666–676 (2014) Yue, R., Hanwu, C., Zhihao, L., Jun, Z., Wanning, Z.: Quantum principal component analysis algorithm. J. Comput. Sci. 37(3), 666–676 (2014)
79.
go back to reference Duan, B., Yuan, J., Yu, C.H., Huang, J., Hsieh, C.Y.: A survey on HHL algorithm: from theory to application in quantum machine learning. Phys. Lett. A 384(24), 126595 (2020)MathSciNet Duan, B., Yuan, J., Yu, C.H., Huang, J., Hsieh, C.Y.: A survey on HHL algorithm: from theory to application in quantum machine learning. Phys. Lett. A 384(24), 126595 (2020)MathSciNet
80.
go back to reference Coles, P.J., Eidenbenz, S., Pakin, S., Adedoyin, A., Ambrosiano, J., Anisimov, P., Casper, W., Chennupati, G., Coffrin, C., Djidjev, H., et al.: Quantum algorithm implementations for beginners. arXiv, pp. arXiv–1804 (2018) Coles, P.J., Eidenbenz, S., Pakin, S., Adedoyin, A., Ambrosiano, J., Anisimov, P., Casper, W., Chennupati, G., Coffrin, C., Djidjev, H., et al.: Quantum algorithm implementations for beginners. arXiv, pp. arXiv–1804 (2018)
81.
go back to reference Martin, A., Candelas, B., Rodríguez-Rozas, Á., Martín-Guerrero, J.D., Chen, X., Lamata, L., Orús, R., Solano, E., Sanz, M.: Towards pricing financial derivatives with an IBM quantum computer (2019) Martin, A., Candelas, B., Rodríguez-Rozas, Á., Martín-Guerrero, J.D., Chen, X., Lamata, L., Orús, R., Solano, E., Sanz, M.: Towards pricing financial derivatives with an IBM quantum computer (2019)
82.
go back to reference Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017) Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)
83.
go back to reference Yu, C.H., Gao, F., Lin, S., Wang, J.: Quantum data compression by principal component analysis. Quantum Inf. Process. 18(8) (2019) Yu, C.H., Gao, F., Lin, S., Wang, J.: Quantum data compression by principal component analysis. Quantum Inf. Process. 18(8) (2019)
84.
go back to reference Lin, J., Bao, W.S., Zhang, S., Li, T., Wang, X.: An improved quantum principal component analysis algorithm based on the quantum singular threshold method. Phys. Lett. A 383(24), 2862–2868 (2019)ADSMathSciNet Lin, J., Bao, W.S., Zhang, S., Li, T., Wang, X.: An improved quantum principal component analysis algorithm based on the quantum singular threshold method. Phys. Lett. A 383(24), 2862–2868 (2019)ADSMathSciNet
85.
go back to reference He, C., Li, J., Liu, W.: An exact quantum principal component analysis algorithm based on quantum singular value threshold (2020) He, C., Li, J., Liu, W.: An exact quantum principal component analysis algorithm based on quantum singular value threshold (2020)
86.
go back to reference Daskin, A.: Obtaining a linear combination of the principal components of a matrix on quantum computers. Quantum Inf. Process. 15(10), 1–15 (2016)MathSciNet Daskin, A.: Obtaining a linear combination of the principal components of a matrix on quantum computers. Quantum Inf. Process. 15(10), 1–15 (2016)MathSciNet
87.
go back to reference Woerner, S., Zoufal, C., Grinko, D.: Iterative quantum amplitude estimation. npj Quantum Inf. 7, 52 (2021)ADS Woerner, S., Zoufal, C., Grinko, D.: Iterative quantum amplitude estimation. npj Quantum Inf. 7, 52 (2021)ADS
88.
go back to reference Wan, K., Berta, M., Campbell, E.T.: A randomized quantum algorithm for statistical phase estimation. Phys. Rev. Lett. 129, 030503 (2021)MathSciNet Wan, K., Berta, M., Campbell, E.T.: A randomized quantum algorithm for statistical phase estimation. Phys. Rev. Lett. 129, 030503 (2021)MathSciNet
89.
go back to reference Chapeau-Blondeau, F., Belin, E.: Quantum signal processing for quantum phase estimation: fourier transform versus maximum likelihood approaches. Ann. Telecommun. 75, 641–653 (2020) Chapeau-Blondeau, F., Belin, E.: Quantum signal processing for quantum phase estimation: fourier transform versus maximum likelihood approaches. Ann. Telecommun. 75, 641–653 (2020)
90.
go back to reference Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Yamamoto, N.: Amplitude estimation without phase estimation. Quantum Inf. Process. 19(2) (2020) Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Yamamoto, N.: Amplitude estimation without phase estimation. Quantum Inf. Process. 19(2) (2020)
91.
go back to reference Yu, K., Guo, G.D., Lin, S.: Quantum dimensionality reduction by linear discriminant analysis (2021) Yu, K., Guo, G.D., Lin, S.: Quantum dimensionality reduction by linear discriminant analysis (2021)
92.
go back to reference Han, J., Kamber, M.: Data Mining: Concepts and Techniques Morgan Kaufmann. Machine Press, Cambridge (2006) Han, J., Kamber, M.: Data Mining: Concepts and Techniques Morgan Kaufmann. Machine Press, Cambridge (2006)
93.
go back to reference Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pp. 207–216 (1993) Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pp. 207–216 (1993)
94.
go back to reference Huihua, Z.: Research and Simulation of Scheduling Strategy for automated warehouse. Ph.D. thesis, Wuhan University of Technology (2009) Huihua, Z.: Research and Simulation of Scheduling Strategy for automated warehouse. Ph.D. thesis, Wuhan University of Technology (2009)
95.
go back to reference Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the International Conference on Very Large Data Bases (1994) Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the International Conference on Very Large Data Bases (1994)
96.
go back to reference Gao, Q., Zhang, F., Wang, R., Zhou, F.: Association rules mining with quantum computing and quantum storage. In: International Conference on Big Data Computing & Communications (2017) Gao, Q., Zhang, F., Wang, R., Zhou, F.: Association rules mining with quantum computing and quantum storage. In: International Conference on Big Data Computing & Communications (2017)
97.
go back to reference Ykhlef, M.: A quantum swarm evolutionary algorithm for mining association rules in large databases. J. King Saud Univ. Comput. Inf. Sci. 23(1), 1–6 (2011) Ykhlef, M.: A quantum swarm evolutionary algorithm for mining association rules in large databases. J. King Saud Univ. Comput. Inf. Sci. 23(1), 1–6 (2011)
98.
go back to reference Wang, J., Chen, J., Gao, J.: ECC multi-label code odor detection method based on sort loss. Comput. Res. Dev. 58, 178–188 (2021) Wang, J., Chen, J., Gao, J.: ECC multi-label code odor detection method based on sort loss. Comput. Res. Dev. 58, 178–188 (2021)
99.
go back to reference Chakraborty, S., Gilyén, A., Jeffery, S.: The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation. arXiv preprint arXiv:1804.01973 (2018) Chakraborty, S., Gilyén, A., Jeffery, S.: The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation. arXiv preprint arXiv:​1804.​01973 (2018)
100.
go back to reference Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of 43 Computing, pp. 193–204 (2019) Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of 43 Computing, pp. 193–204 (2019)
101.
go back to reference Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 50505–50505 (2012)ADS Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 50505–50505 (2012)ADS
102.
go back to reference Fei, G., Shijie, P., Hailing, L., Sujuan, Q., Qiaoyan, W.: Review of quantum regression algorithms, no. 4, p. 13. Beijing Institute of Electronic Science and Technology (2019) Fei, G., Shijie, P., Hailing, L., Sujuan, Q., Qiaoyan, W.: Review of quantum regression algorithms, no. 4, p. 13. Beijing Institute of Electronic Science and Technology (2019)
103.
104.
go back to reference Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019) Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. Quantum 3, 163 (2019)
105.
go back to reference Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017) Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017)
106.
go back to reference Desu, S.S.T., Srijith, P.K., Rao, M.V.P., Sivadasan, N.: Adiabatic quantum feature selection for sparse linear regression. In: International Conference on Computational Science, pp. 98–112. Springer (2021) Desu, S.S.T., Srijith, P.K., Rao, M.V.P., Sivadasan, N.: Adiabatic quantum feature selection for sparse linear regression. In: International Conference on Computational Science, pp. 98–112. Springer (2021)
107.
go back to reference Wright, S.: Correlation and causation. J. Agric. Res. 20(7), 557 (1921) Wright, S.: Correlation and causation. J. Agric. Res. 20(7), 557 (1921)
108.
go back to reference Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988) Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)
109.
110.
go back to reference Catarina, M., Andreas, W.: Quantum-like bayesian networks for modeling decision making. Front. Psychol. 7, 11 (2016) Catarina, M., Andreas, W.: Quantum-like bayesian networks for modeling decision making. Front. Psychol. 7, 11 (2016)
111.
go back to reference Low, G.H., Yoder, T.J., Chuang, I.L.: Quantum inference on bayesian networks. Phys. Rev. A 89(6), 1–11 (2014) Low, G.H., Yoder, T.J., Chuang, I.L.: Quantum inference on bayesian networks. Phys. Rev. A 89(6), 1–11 (2014)
112.
go back to reference Borujeni, S.E., Nannapaneni, S., Nguyen, N.H., Behrman, E.C., Steck, J.E.: Quantum circuit representation of bayesian networks. Expert Syst. Appl. 176(Aug.), 176 (2021) Borujeni, S.E., Nannapaneni, S., Nguyen, N.H., Behrman, E.C., Steck, J.E.: Quantum circuit representation of bayesian networks. Expert Syst. Appl. 176(Aug.), 176 (2021)
113.
go back to reference She, L., Han, S., Liu, X.: Application of quantum-like bayesian network and belief entropy for interference effect in multi-attribute decision making problem. Comput. Ind. Eng. 157(2), 107307 (2021) She, L., Han, S., Liu, X.: Application of quantum-like bayesian network and belief entropy for interference effect in multi-attribute decision making problem. Comput. Ind. Eng. 157(2), 107307 (2021)
114.
go back to reference Borujeni, S.E., Nguyen, N.H., Nannapaneni, S., Behrman, E.C., Steck, J.E.: Experimental evaluation of quantum bayesian networks on IBM QX hardware. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 372–378 (2020) Borujeni, S.E., Nguyen, N.H., Nannapaneni, S., Behrman, E.C., Steck, J.E.: Experimental evaluation of quantum bayesian networks on IBM QX hardware. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 372–378 (2020)
115.
go back to reference Nguyen, N., Chen, K.-C.: Bayesian quantum neural networks. IEEE Access 10, 54110–54122 (2022) Nguyen, N., Chen, K.-C.: Bayesian quantum neural networks. IEEE Access 10, 54110–54122 (2022)
116.
go back to reference Marcot, B.G.: EcoQBNs: first application of ecological modeling with quantum bayesian networks. Entropy 23(4), 441 (2021)ADSMathSciNet Marcot, B.G.: EcoQBNs: first application of ecological modeling with quantum bayesian networks. Entropy 23(4), 441 (2021)ADSMathSciNet
117.
go back to reference Marcot, B.G.: EcoQBNs: first application of ecological modeling with quantum bayesian networks. Entropy 23(4), 441 (2021)ADSMathSciNet Marcot, B.G.: EcoQBNs: first application of ecological modeling with quantum bayesian networks. Entropy 23(4), 441 (2021)ADSMathSciNet
118.
go back to reference Harikrishnakumar, R., Nannapaneni, S.: Forecasting bike sharing demand using quantum Bayesian network. Expert Syst. Appl. (2023) Harikrishnakumar, R., Nannapaneni, S.: Forecasting bike sharing demand using quantum Bayesian network. Expert Syst. Appl. (2023)
119.
go back to reference Ried, K., Agnew, M., Vermeyden, L., Janzing, D., Spekkens, R.W., Resch, K.J.: Inferring causal structure: a quantum advantage. arXiv preprint arXiv:1406.5036 (2014) Ried, K., Agnew, M., Vermeyden, L., Janzing, D., Spekkens, R.W., Resch, K.J.: Inferring causal structure: a quantum advantage. arXiv preprint arXiv:​1406.​5036 (2014)
120.
go back to reference Shuai, D., Lu, C., Zhang, B.: Entanglement partitioning of quantum particles for data clustering. In: International Computer Software & Applications Conference (2006) Shuai, D., Lu, C., Zhang, B.: Entanglement partitioning of quantum particles for data clustering. In: International Computer Software & Applications Conference (2006)
121.
go back to reference Xiao, J., Yan, Y.P., Lin, Y., Yuan, L., Zhang, J.: A quantum-inspired genetic algorithm for data clustering. In: Evolutionary Computation (2008) Xiao, J., Yan, Y.P., Lin, Y., Yuan, L., Zhang, J.: A quantum-inspired genetic algorithm for data clustering. In: Evolutionary Computation (2008)
122.
go back to reference Al-Baity, H., Meshoul, S., Kaban, A., Safadi, L.A.: Quantum behaved particle swarm optimization for data clustering with multiple objectives. In: 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR) (2015) Al-Baity, H., Meshoul, S., Kaban, A., Safadi, L.A.: Quantum behaved particle swarm optimization for data clustering with multiple objectives. In: 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR) (2015)
123.
go back to reference Patel, O., Bharill, N., Tiwari, D.A.: A quantum-inspired fuzzy based evolutionary algorithm for data clustering. In: IEEE International Conference on Fuzzy Systems (2015) Patel, O., Bharill, N., Tiwari, D.A.: A quantum-inspired fuzzy based evolutionary algorithm for data clustering. In: IEEE International Conference on Fuzzy Systems (2015)
Metadata
Title
A survey on quantum data mining algorithms: challenges, advances and future directions
Authors
Han Qi
Liyuan Wang
Changqing Gong
Abdullah Gani
Publication date
01-03-2024
Publisher
Springer US
Published in
Quantum Information Processing / Issue 3/2024
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-024-04279-z

Other articles of this Issue 3/2024

Quantum Information Processing 3/2024 Go to the issue