Skip to main content
Top

2015 | OriginalPaper | Chapter

19. A Systems View of Lignocellulose Hydrolysis

Authors : Deepti Tanjore, Tom L. Richard

Published in: Advances in Bioprocess Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With a growing need to produce low-carbon fuels and chemicals for sustainable economic development, there is growing interest in utilizing lignocellulosic biomass as a feedstock resource for the emerging bioeconomy. Lignocellulosic biomass is currently available in large quantities as crop and forest residues or organic wastes, and could be produced at high yields by planting dedicated energy crops, but is not as easily processed by biochemical or thermochemical conversion technologies as other bio-based feedstocks such as sugars, starches, or oils. Many approaches to utilizing lignocellulosic resources and converting them into value added products first require deconstruction the plant cell wall polymers into their constitutive sugars for fermentation or chemical conversion, and often recover lignin as a co-product. This process of plant cell wall deconstruction, or hydrolysis, includes both pretreatment technologies that degrade the lignin, and saccharification technologies that produce sugar monomers and oligomers from sugar polymers such as cellulose and hemicellulose. This chapter reviews leading technologies for deconstructing lignocellulosic biomass, including mechanical, chemical, and biological approaches, and evaluates the advantages and tradeoffs among them.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Acharjee, T. C., Coronella, C. J., & Vasquez, V. R. (2011). Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresource Technology, 102(7), 4849–4854. Acharjee, T. C., Coronella, C. J., & Vasquez, V. R. (2011). Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresource Technology, 102(7), 4849–4854.
go back to reference Adler, E. (1977). Lignin chemistry—Past, present and future. Wood Science and Technology, 11(3), 169–218. Adler, E. (1977). Lignin chemistry—Past, present and future. Wood Science and Technology, 11(3), 169–218.
go back to reference AdvanceBioSystems. (2012). AdvaceBio supplied SuPR2G reactor to Brazilian laboratory. In AdvanceBioSystems (Ed.), Biomass magazine (Vol. 2014). University Park, PA: BBI International. AdvanceBioSystems. (2012). AdvaceBio supplied SuPR2G reactor to Brazilian laboratory. In AdvanceBioSystems (Ed.), Biomass magazine (Vol. 2014). University Park, PA: BBI International.
go back to reference Ahmadi, F., Rad, A. R., Holtzapple, M. T., & Zamiri, M. J. (2013). Short‐term oxidative lime pretreatment of palm pruning waste for use as animal feedstuff. Journal of the Science of Food and Agriculture, 93(8), 2061–2070. Ahmadi, F., Rad, A. R., Holtzapple, M. T., & Zamiri, M. J. (2013). Short‐term oxidative lime pretreatment of palm pruning waste for use as animal feedstuff. Journal of the Science of Food and Agriculture, 93(8), 2061–2070.
go back to reference Almin, K. E., Eriksson, K.-E., & Jansson, C. (1967). Enzymic degradation of polymers: II. Viscometric determination of cellulase activity in absolute terms. Biochimica et Biophysica Acta (BBA) Enzymology, 139(2), 248–253. Almin, K. E., Eriksson, K.-E., & Jansson, C. (1967). Enzymic degradation of polymers: II. Viscometric determination of cellulase activity in absolute terms. Biochimica et Biophysica Acta (BBA) Enzymology, 139(2), 248–253.
go back to reference Antal, M. J., Brittain, A., DeAlmeida, C., Ramayya, S., & Roy, J. C. (1987). Heterolysis and homolysis in supercritical water. Supercritical fluids: Chemical and engineering principles and applications (pp. 77–86). Washington, DC: American Chemical Society. Antal, M. J., Brittain, A., DeAlmeida, C., Ramayya, S., & Roy, J. C. (1987). Heterolysis and homolysis in supercritical water. Supercritical fluids: Chemical and engineering principles and applications (pp. 77–86). Washington, DC: American Chemical Society.
go back to reference Azuma, J., Tanaka, F., & Koshijima, T. (1984). Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. Journal of Fermentation Technology, 62(4), 377–384. Azuma, J., Tanaka, F., & Koshijima, T. (1984). Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. Journal of Fermentation Technology, 62(4), 377–384.
go back to reference Bakker, R., Gosselink, R., Maas, R., De Vrije, T., De Jong, E., Van Groenestijn, J., et al. (2004). Biofuel production from acid-impregnated willow and switchgrass. Proceedings 2nd World Conference on Biomass for Energy, Industry and Climate Protection. 10 May 2008, Rome, Italy. Bakker, R., Gosselink, R., Maas, R., De Vrije, T., De Jong, E., Van Groenestijn, J., et al. (2004). Biofuel production from acid-impregnated willow and switchgrass. Proceedings 2nd World Conference on Biomass for Energy, Industry and Climate Protection. 10 May 2008, Rome, Italy.
go back to reference Bals, B. D., Gunawan, C., Moore, J., Teymouri, F., & Dale, B. E. (2014). Enzymatic hydrolysis of pelletized AFEX™‐treated corn stover at high solid loadings. Biotechnology and Bioengineering, 111(2), 264–271. Bals, B. D., Gunawan, C., Moore, J., Teymouri, F., & Dale, B. E. (2014). Enzymatic hydrolysis of pelletized AFEX™‐treated corn stover at high solid loadings. Biotechnology and Bioengineering, 111(2), 264–271.
go back to reference Barakat, A., de Vries, H., & Rouau, X. (2013). Dry fractionation process as an important step in current and future lignocellulosic biorefineries: A review. Bioresource Technology, 134, 362–373. Barakat, A., de Vries, H., & Rouau, X. (2013). Dry fractionation process as an important step in current and future lignocellulosic biorefineries: A review. Bioresource Technology, 134, 362–373.
go back to reference Barakat, A., Chuetor, S., Monlau, F., Solhy, A., & Rouau, X. (2014). Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis. Applied Energy, 113, 97–105. Barakat, A., Chuetor, S., Monlau, F., Solhy, A., & Rouau, X. (2014). Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis. Applied Energy, 113, 97–105.
go back to reference Beckham, G. T., Matthews, J. F., Bomble, Y. J., Bu, L., Adney, W. S., Himmel, M. E., et al. (2010). Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. The Journal of Physical Chemistry B, 114(3), 1447–1453. Beckham, G. T., Matthews, J. F., Bomble, Y. J., Bu, L., Adney, W. S., Himmel, M. E., et al. (2010). Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. The Journal of Physical Chemistry B, 114(3), 1447–1453.
go back to reference Béguin, P. (1983). Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Analytical Biochemistry, 131(2), 333–336. Béguin, P. (1983). Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Analytical Biochemistry, 131(2), 333–336.
go back to reference Berghem, L. E., & Pettersson, L. G. (1973). The mechanism of enzymatic cellulose degradation. European Journal of Biochemistry, 37(1), 21–30. Berghem, L. E., & Pettersson, L. G. (1973). The mechanism of enzymatic cellulose degradation. European Journal of Biochemistry, 37(1), 21–30.
go back to reference Berghem, L. E. R., Pettersson, L. G., & Axiö-Fredriksson, U.-B. (1976). The mechanism of enzymatic cellulose degradation. European Journal of Biochemistry, 61(2), 621–630. Berghem, L. E. R., Pettersson, L. G., & Axiö-Fredriksson, U.-B. (1976). The mechanism of enzymatic cellulose degradation. European Journal of Biochemistry, 61(2), 621–630.
go back to reference Bergius, F. (1937). Conversion of wood to carbohydrates. Industrial and Engineering Chemistry, 29(3), 247–253. Bergius, F. (1937). Conversion of wood to carbohydrates. Industrial and Engineering Chemistry, 29(3), 247–253.
go back to reference Bioenergy in Oregon. (2010). Report to the oregon legislature, August 2010: Biofuels impact study (Vol. 2014). Salem, OR: Bioenergy in Oregon. Oregon.gov. Bioenergy in Oregon. (2010). Report to the oregon legislature, August 2010: Biofuels impact study (Vol. 2014). Salem, OR: Bioenergy in Oregon. Oregon.gov.
go back to reference Björkman, A. (1956). Svensk Papperstidn, 59, 477. Björkman, A. (1956). Svensk Papperstidn, 59, 477.
go back to reference Björkman, A. (1957). Svensk Papperstidn, 59, 477, 1956; A. Bjorkman and B. Person. Svensk Papperstidn, 60(158), 285. Björkman, A. (1957). Svensk Papperstidn, 59, 477, 1956; A. Bjorkman and B. Person. Svensk Papperstidn, 60(158), 285.
go back to reference Boehm, R. M. (1930). The masonite process 1. Industrial and Engineering Chemistry, 22(5), 493–497. Boehm, R. M. (1930). The masonite process 1. Industrial and Engineering Chemistry, 22(5), 493–497.
go back to reference Boynton, L. C., & Miller, R. C. (1927). The occurrence of a cellulase in the ship-worm. Journal of Biological Chemistry, 75(2), 613–618. Boynton, L. C., & Miller, R. C. (1927). The occurrence of a cellulase in the ship-worm. Journal of Biological Chemistry, 75(2), 613–618.
go back to reference Brooks, R. E., Su, T. M., Brennan, M. J. J., Frick, J., & Lynch, M. (1979). Bioconversion of plant biomass to ethanol. Final report, 15 December 1976–31 December 1978. COO-4147-7 United States10.2172/5141284Thu Aug 22 07:33:20 EDT 2013NTIS, PC A03/MF A01.ERA-05-034658; EDB-80-105542English. Brooks, R. E., Su, T. M., Brennan, M. J. J., Frick, J., & Lynch, M. (1979). Bioconversion of plant biomass to ethanol. Final report, 15 December 1976–31 December 1978. COO-4147-7 United States10.2172/5141284Thu Aug 22 07:33:20 EDT 2013NTIS, PC A03/MF A01.ERA-05-034658; EDB-80-105542English.
go back to reference Brown, R. C., & Brown, T. R. (2013). Biorenewable resources: engineering new products from agriculture. New York, NY: Wiley. Brown, R. C., & Brown, T. R. (2013). Biorenewable resources: engineering new products from agriculture. New York, NY: Wiley.
go back to reference Carolan, J. E., Joshi, S. V., & Dale, B. E. (2007). Technical and financial feasibility analysis of distributed bioprocessing using regional biomass pre-processing centers. Journal of Agricultural and Food Industrial Organization, 5(2). Carolan, J. E., Joshi, S. V., & Dale, B. E. (2007). Technical and financial feasibility analysis of distributed bioprocessing using regional biomass pre-processing centers. Journal of Agricultural and Food Industrial Organization, 5(2).
go back to reference Cateto, C., Hu, G., & Ragauskas, A. (2011). Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy & Environmental Science, 4(4), 1516–1521. Cateto, C., Hu, G., & Ragauskas, A. (2011). Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy & Environmental Science, 4(4), 1516–1521.
go back to reference Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Lime pretreatment of switchgrass. Applied Biochemistry and Biotechnology, 63–65, 3–19. Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Lime pretreatment of switchgrass. Applied Biochemistry and Biotechnology, 63–65, 3–19.
go back to reference Chen, X., Shekiro, J., Pschorn, T., Sabourin, M., Tao, L., Elander, R., et al. (2014). A highly efficient dilute alkali deacetylation and mechanical (disc) refining process for the conversion of renewable biomass to lower cost sugars. Biotechnology for Biofuels, 7(1), 98. Chen, X., Shekiro, J., Pschorn, T., Sabourin, M., Tao, L., Elander, R., et al. (2014). A highly efficient dilute alkali deacetylation and mechanical (disc) refining process for the conversion of renewable biomass to lower cost sugars. Biotechnology for Biofuels, 7(1), 98.
go back to reference Chum, H., Johnson, D., Black, S., & Overend, R. (1990). Pretreatment-catalyst effects and the combined severity parameter. Applied Biochemistry and Biotechnology, 24–25(1), 1–14. Chum, H., Johnson, D., Black, S., & Overend, R. (1990). Pretreatment-catalyst effects and the combined severity parameter. Applied Biochemistry and Biotechnology, 24–25(1), 1–14.
go back to reference Ciesielski, P. N., Wang, W., Chen, X., Vinzant, T. B., Tucker, M. P., Decker, S. R., et al. (2014). Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover. Part 2: Morphological and structural substrate analysis. Biotechnology for Biofuels, 7(1), 1–12. Ciesielski, P. N., Wang, W., Chen, X., Vinzant, T. B., Tucker, M. P., Decker, S. R., et al. (2014). Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover. Part 2: Morphological and structural substrate analysis. Biotechnology for Biofuels, 7(1), 1–12.
go back to reference Diehl, W. W. (1949). Concerning the identity of Iterson’s cellulolytic mycogone. Mycologia, 277–279. Diehl, W. W. (1949). Concerning the identity of Iterson’s cellulolytic mycogone. Mycologia, 277–279.
go back to reference Donohoe, B. S., Decker, S. R., Tucker, M. P., Himmel, M. E., & Vinzant, T. B. (2008). Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnology and Bioengineering, 101(5), 913–925. Donohoe, B. S., Decker, S. R., Tucker, M. P., Himmel, M. E., & Vinzant, T. B. (2008). Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnology and Bioengineering, 101(5), 913–925.
go back to reference Dreyfus, H. (1936). Lignocellulosic material. Patent US2047314 A. Dreyfus, H. (1936). Lignocellulosic material. Patent US2047314 A.
go back to reference Dunning, J., & Lathrop, E. C. (1945). Saccharification of agricultural residues. Industrial and Engineering Chemistry, 37(1), 24–29. Dunning, J., & Lathrop, E. C. (1945). Saccharification of agricultural residues. Industrial and Engineering Chemistry, 37(1), 24–29.
go back to reference Duggar, B. M., & Davis, A. R. (1914). Enzyme action in Fucus vesiculosus L. Annals of the Missouri Botanical Garden, 1(4), 419–426. Duggar, B. M., & Davis, A. R. (1914). Enzyme action in Fucus vesiculosus L. Annals of the Missouri Botanical Garden, 1(4), 419–426.
go back to reference Elander, R., Dale, B., Holtzapple, M., Ladisch, M., Lee, Y. Y., Mitchinson, C., et al. (2009). Summary of findings from the biomass refining consortium for applied fundamentals and innovation (CAFI): Corn stover pretreatment. Cellulose, 16(4), 649–659. Elander, R., Dale, B., Holtzapple, M., Ladisch, M., Lee, Y. Y., Mitchinson, C., et al. (2009). Summary of findings from the biomass refining consortium for applied fundamentals and innovation (CAFI): Corn stover pretreatment. Cellulose, 16(4), 649–659.
go back to reference Elliott, D. C., Hart, T. R., Schmidt, A. J., Neuenschwander, G. G., Rotness, L. J., Olarte, M. V., et al. (2013). Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Research, 2(4), 445–454. Elliott, D. C., Hart, T. R., Schmidt, A. J., Neuenschwander, G. G., Rotness, L. J., Olarte, M. V., et al. (2013). Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Research, 2(4), 445–454.
go back to reference Energy.Gov. (2014). Project LIBERTY biorefinery starts cellulosic ethanol production. E.E.a.R. Energy. Retrieved from http://energy.gov/articles/project-liberty-biorefinery-starts-cellulosic-ethanol-production. Energy.Gov. (2014). Project LIBERTY biorefinery starts cellulosic ethanol production. E.E.a.R. Energy. Retrieved from http://​energy.​gov/​articles/​project-liberty-biorefinery-starts-cellulosic-ethanol-production.​
go back to reference Euler, H. (1912). Zur kenntnis der cellulase. Angewandte Chemie, 25(6), 250–251. Euler, H. (1912). Zur kenntnis der cellulase. Angewandte Chemie, 25(6), 250–251.
go back to reference Faith, W. L. (1945). Development of the scholler process in the United States. Industrial and Engineering Chemistry, 37(1), 9–11. Faith, W. L. (1945). Development of the scholler process in the United States. Industrial and Engineering Chemistry, 37(1), 9–11.
go back to reference Garverick, L. (1994). Corrosion in the petrochemical industry. Geauga, OH: ASM International. Garverick, L. (1994). Corrosion in the petrochemical industry. Geauga, OH: ASM International.
go back to reference Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.
go back to reference Gui, X., Wang, G., Hu, M., & Yan, Y. (2013). Combined fungal and mild acid pretreatment of glycyrrhiza uralensis residue for enhancing enzymatic hydrolysis and oil production. BioResources, 8(4), 5485–5499. Gui, X., Wang, G., Hu, M., & Yan, Y. (2013). Combined fungal and mild acid pretreatment of glycyrrhiza uralensis residue for enhancing enzymatic hydrolysis and oil production. BioResources, 8(4), 5485–5499.
go back to reference Hallac, B. B., & Ragauskas, A. J. (2011). Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 5(2), 215–225. Hallac, B. B., & Ragauskas, A. J. (2011). Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 5(2), 215–225.
go back to reference Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., & Templeton, D. (2008). Preparation of samples for compositional analysis. Laboratory Analytical Procedure, 1617. Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., & Templeton, D. (2008). Preparation of samples for compositional analysis. Laboratory Analytical Procedure, 1617.
go back to reference Harris, E. E., & Beglinger, E. (1946). Madison wood sugar process. Industrial and Engineering Chemistry, 38(9), 890–895. Harris, E. E., & Beglinger, E. (1946). Madison wood sugar process. Industrial and Engineering Chemistry, 38(9), 890–895.
go back to reference Harris, E. E., Beglinger, E., Hajny, G. J., & Sherrard, E. C. (1945). Hydrolysis of wood – Treatment with sulfuric acid in a stationary digester. Industrial and Engineering Chemistry, 37(1), 12–23. Harris, E. E., Beglinger, E., Hajny, G. J., & Sherrard, E. C. (1945). Hydrolysis of wood – Treatment with sulfuric acid in a stationary digester. Industrial and Engineering Chemistry, 37(1), 12–23.
go back to reference Hennessey, S. M., Friend, J., Elander, R. T., & Tucker, M. P. (2009). Biomass pretreatment. Google Patents. Hennessey, S. M., Friend, J., Elander, R. T., & Tucker, M. P. (2009). Biomass pretreatment. Google Patents.
go back to reference Higuchi, T. (1985). Biosynthesis of lignin. Biosynthesis and biodegradation of wood components. pp. 141–160. Higuchi, T. (1985). Biosynthesis of lignin. Biosynthesis and biodegradation of wood components. pp. 141–160.
go back to reference Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807. Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.
go back to reference Holladay, J., Bozell, J., White, J., & Johnson, D. (2007). Top value-added chemicals from biomass. Holladay, J., Bozell, J., White, J., & Johnson, D. (2007). Top value-added chemicals from biomass.
go back to reference Hu, Z., & Wen, Z. (2008). Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 38(3), 369–378. Hu, Z., & Wen, Z. (2008). Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 38(3), 369–378.
go back to reference Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 106(9), 4044–4098. Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 106(9), 4044–4098.
go back to reference Hurst, P. L., Sullivan, P. A., & Shepherd, M. G. (1978). Substrate specificity and mode of action of a cellulase from Aspergillus niger. Biochemistry Journal, 169, 389–395. Hurst, P. L., Sullivan, P. A., & Shepherd, M. G. (1978). Substrate specificity and mode of action of a cellulase from Aspergillus niger. Biochemistry Journal, 169, 389–395.
go back to reference Intanakul, P., Krairiksh, M., & Kitchaiya, P. (2003). Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. Journal of Wood Chemistry and Technology, 23(2), 217–225. Intanakul, P., Krairiksh, M., & Kitchaiya, P. (2003). Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. Journal of Wood Chemistry and Technology, 23(2), 217–225.
go back to reference Jacobsen, S., & Wyman, C. (2000). Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. In M. Finkelstein & B. Davison (Eds.), Twenty-first symposium on biotechnology for fuels and chemicals (pp. 81–96). New York, NY: Humana. Jacobsen, S., & Wyman, C. (2000). Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. In M. Finkelstein & B. Davison (Eds.), Twenty-first symposium on biotechnology for fuels and chemicals (pp. 81–96). New York, NY: Humana.
go back to reference Jacobson, C. A., & Holmes, A. (1914). Enzymes present in Alfalfa. Alfalfa investigation. V. Journal of the American Chemical Society, 36(10), 2170–2182. Jacobson, C. A., & Holmes, A. (1914). Enzymes present in Alfalfa. Alfalfa investigation. V. Journal of the American Chemical Society, 36(10), 2170–2182.
go back to reference Jeremic, D., Goacher, R. E., Yan, R., Karunakaran, C., & Master, E. R. (2014). Direct and up-close views of plant cell walls show a leading role for lignin-modifying enzymes on ensuing xylanases. Biotechnology for Biofuels, 7(1), 496. Jeremic, D., Goacher, R. E., Yan, R., Karunakaran, C., & Master, E. R. (2014). Direct and up-close views of plant cell walls show a leading role for lignin-modifying enzymes on ensuing xylanases. Biotechnology for Biofuels, 7(1), 496.
go back to reference Kaar, W. E., & Holtzapple, M. T. (2000). Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18(3), 189–199. Kaar, W. E., & Holtzapple, M. T. (2000). Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18(3), 189–199.
go back to reference Kang, Y., Bansal, P., Realff, M. J., & Bommarius, A. S. (2013). SO2-catalyzed steam explosion: The effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass. Biotechnology Progress, 29(4), 909–916. Kang, Y., Bansal, P., Realff, M. J., & Bommarius, A. S. (2013). SO2-catalyzed steam explosion: The effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass. Biotechnology Progress, 29(4), 909–916.
go back to reference Katzen, R., & Othmer, D. F. (1942). Wood hydrolysis. A continuous process. Industrial and Engineering Chemistry, 34(3), 314–322. Katzen, R., & Othmer, D. F. (1942). Wood hydrolysis. A continuous process. Industrial and Engineering Chemistry, 34(3), 314–322.
go back to reference Kautto, J., Realff, M. J., Ragauskas, A. J., & Kässi, T. (2014). Economic analysis of an organosolv process for bioethanol production. BioResources, 9(4), 6041–6072. Kautto, J., Realff, M. J., Ragauskas, A. J., & Kässi, T. (2014). Economic analysis of an organosolv process for bioethanol production. BioResources, 9(4), 6041–6072.
go back to reference Keller, F. A., Hamilton, J. E., & Nguyen, Q. A. (2003). Microbial pretreatment of biomass. Applied Biochemistry and Biotechnology, 105(1-3), 27–41. Keller, F. A., Hamilton, J. E., & Nguyen, Q. A. (2003). Microbial pretreatment of biomass. Applied Biochemistry and Biotechnology, 105(1-3), 27–41.
go back to reference Kilambi, S., & Kadam, K. L. (2013). Production of fermentable sugars and lignin from biomass using supercritical fluids. Google Patents Kilambi, S., & Kadam, K. L. (2013). Production of fermentable sugars and lignin from biomass using supercritical fluids. Google Patents
go back to reference Kim, S., & Holtzapple, M. T. (2006). Effect of structural features on enzyme digestibility of corn stover. Bioresource Technology, 97(4), 583–591. Kim, S., & Holtzapple, M. T. (2006). Effect of structural features on enzyme digestibility of corn stover. Bioresource Technology, 97(4), 583–591.
go back to reference Kleinert, T.N. (1971). Organosolv pulping and recovery process. Google Patents. Kleinert, T.N. (1971). Organosolv pulping and recovery process. Google Patents.
go back to reference Kressman, F. W. (1922). The manufacture of ethyl alcohol from wood waste. Washington, DC: US Department of Agriculture. Kressman, F. W. (1922). The manufacture of ethyl alcohol from wood waste. Washington, DC: US Department of Agriculture.
go back to reference Kumar, R., Mago, G., Balan, V., & Wyman, C. E. (2009). Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technology, 100(17), 3948–3962. Kumar, R., Mago, G., Balan, V., & Wyman, C. E. (2009). Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technology, 100(17), 3948–3962.
go back to reference Kumar, R., Hu, F., Sannigrahi, P., Jung, S., Ragauskas, A. J., & Wyman, C. E. (2013). Carbohydrate derived‐pseudo‐lignin can retard cellulose biological conversion. Biotechnology and Bioengineering, 110(3), 737–753. Kumar, R., Hu, F., Sannigrahi, P., Jung, S., Ragauskas, A. J., & Wyman, C. E. (2013). Carbohydrate derived‐pseudo‐lignin can retard cellulose biological conversion. Biotechnology and Bioengineering, 110(3), 737–753.
go back to reference Lane, J. (2012). Virdia ups the ante in the Race for the new sugars. BiofuelsDigest.com, 2014. California. Lane, J. (2012). Virdia ups the ante in the Race for the new sugars. BiofuelsDigest.com, 2014. California.
go back to reference Lee, Y., Iyer, P., & Torget, R. W. (1999). Dilute-acid hydrolysis of lignocellulosic biomass. In G. T. Tsao, A. P. Brainard, H. R. Bungay, N. J. Cao, P. Cen, Z. Chen, et al. (Eds.), Recent progress in bioconversion of lignocellulosics (pp. 93–115). New York, NY: Springer. Lee, Y., Iyer, P., & Torget, R. W. (1999). Dilute-acid hydrolysis of lignocellulosic biomass. In G. T. Tsao, A. P. Brainard, H. R. Bungay, N. J. Cao, P. Cen, Z. Chen, et al. (Eds.), Recent progress in bioconversion of lignocellulosics (pp. 93–115). New York, NY: Springer.
go back to reference Li, Z., Chen, C. H., Liu, T., Mathrubootham, V., Hegg, E. L., & Hodge, D. B. (2013a). Catalysis with CuII (bpy) improves alkaline hydrogen peroxide pretreatment. Biotechnology and Bioengineering, 110(4), 1078–1086. Li, Z., Chen, C. H., Liu, T., Mathrubootham, V., Hegg, E. L., & Hodge, D. B. (2013a). Catalysis with CuII (bpy) improves alkaline hydrogen peroxide pretreatment. Biotechnology and Bioengineering, 110(4), 1078–1086.
go back to reference Li, C., Tanjore, D., He, W., Wong, J., Gardner, J. L., Sale, K. L., et al. (2013). Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass. Biotechnology for Biofuels, 6(154), 1–13. Li, C., Tanjore, D., He, W., Wong, J., Gardner, J. L., Sale, K. L., et al. (2013). Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass. Biotechnology for Biofuels, 6(154), 1–13.
go back to reference Li, C., Cheng, G., Balan, V., Kent, M. S., Ong, M., Chundawat, S. P., et al. (2011). Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology, 102(13), 6928–6936. Li, C., Cheng, G., Balan, V., Kent, M. S., Ong, M., Chundawat, S. P., et al. (2011). Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology, 102(13), 6928–6936.
go back to reference Li, L. H., Flora, R. M., & King, K. W. (1965). Individual roles of cellulase components derived from Trichoderma viride. Archives of Biochemistry and Biophysics, 111(2), 439–447. Li, L. H., Flora, R. M., & King, K. W. (1965). Individual roles of cellulase components derived from Trichoderma viride. Archives of Biochemistry and Biophysics, 111(2), 439–447.
go back to reference Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., et al. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101(13), 4900–4906. Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., et al. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101(13), 4900–4906.
go back to reference Li, C., Tanjore, D., He, W., Wong, J., Gardner, J. L., Sale, K. L., et al. (2013b). Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass. Biotechnology for Biofuels, 6(154), 1–13. Li, C., Tanjore, D., He, W., Wong, J., Gardner, J. L., Sale, K. L., et al. (2013b). Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass. Biotechnology for Biofuels, 6(154), 1–13.
go back to reference Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162(7), 1872–1880. Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162(7), 1872–1880.
go back to reference Linger, J. G., Vardon, D. R., Guarnieri, M. T., Karp, E. M., Hunsinger, G. B., Frandern, M. A., et al. (2014). Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences, 111(33). Linger, J. G., Vardon, D. R., Guarnieri, M. T., Karp, E. M., Hunsinger, G. B., Frandern, M. A., et al. (2014). Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences, 111(33).
go back to reference Lloyd, T. A., & Wyman, C. E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology, 96(18), 1967–1977. Lloyd, T. A., & Wyman, C. E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology, 96(18), 1967–1977.
go back to reference Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy, 27(4), 339–352. Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy, 27(4), 339–352.
go back to reference McNeill, B. (1998). Saturated steam tables. S. Tables S (Ed.). Tempe, AZ. McNeill, B. (1998). Saturated steam tables. S. Tables S (Ed.). Tempe, AZ.
go back to reference Miller, S., & Hester, R. (2007). Concentrated acid conversion of pine softwood to sugars, part I: Use of a twin-screw reactor for hydrolysis pretreatment. Chemical Engineering Communications, 194(1), 85–102. Miller, S., & Hester, R. (2007). Concentrated acid conversion of pine softwood to sugars, part I: Use of a twin-screw reactor for hydrolysis pretreatment. Chemical Engineering Communications, 194(1), 85–102.
go back to reference Miyaji, K. (1930). Note on the presence of Monilia in mother culture of soy sauce. Bulletin of the College of Agriculture Research Japan, 10, 5. Miyaji, K. (1930). Note on the presence of Monilia in mother culture of soy sauce. Bulletin of the College of Agriculture Research Japan, 10, 5.
go back to reference Moens, L., & Khan, N. (2002). Application of room-temperature ionic liquids to the chemical processing of biomass-derived feedstocks. In R. D. Rogers, K. R. Seddon, & S. Volkov (Eds.), Green industrial applications of ionic liquids (pp. 157–171). New York, NY: Springer. Moens, L., & Khan, N. (2002). Application of room-temperature ionic liquids to the chemical processing of biomass-derived feedstocks. In R. D. Rogers, K. R. Seddon, & S. Volkov (Eds.), Green industrial applications of ionic liquids (pp. 157–171). New York, NY: Springer.
go back to reference Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., & Ladisch, M. R. (2005a). Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technology, 96(18), 1986–1993. Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., & Ladisch, M. R. (2005a). Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technology, 96(18), 1986–1993.
go back to reference Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., et al. (2005b). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., et al. (2005b). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.
go back to reference Narani, A., Tanjore, D., Gardner, J., Li, C., Rasson, J., & Perry, P. (2014). Design and operation of a “Tea-Cup” reactor for scale-up of aqueous phase heterogenous catalytic reactions. Atlanta, GA: Annual Meeting of American Institute of Chemical Engineers. Narani, A., Tanjore, D., Gardner, J., Li, C., Rasson, J., & Perry, P. (2014). Design and operation of a “Tea-Cup” reactor for scale-up of aqueous phase heterogenous catalytic reactions. Atlanta, GA: Annual Meeting of American Institute of Chemical Engineers.
go back to reference Neely, W. C. (1984). Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnology and Bioengineering, 26(1), 59–65. Neely, W. C. (1984). Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnology and Bioengineering, 26(1), 59–65.
go back to reference Ooshima, H., Aso, K., Harano, Y., & Yamamoto, T. (1984). Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnology Letters, 6(5), 289–294. Ooshima, H., Aso, K., Harano, Y., & Yamamoto, T. (1984). Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnology Letters, 6(5), 289–294.
go back to reference Orth, A. B., Royse, D., & Tien, M. (1993). Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Applied and Environmental Microbiology, 59(12), 4017–4023. Orth, A. B., Royse, D., & Tien, M. (1993). Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Applied and Environmental Microbiology, 59(12), 4017–4023.
go back to reference Overend, R. P., & Chronet, E. (1987). Fractionation of lignocellulosics by steam-aqueous pretreatments. Philosophical Transactions of Royal Society of London, A321, 523–536. Overend, R. P., & Chronet, E. (1987). Fractionation of lignocellulosics by steam-aqueous pretreatments. Philosophical Transactions of Royal Society of London, A321, 523–536.
go back to reference Park, J. I., Steen, E. J., Burd, H., Evans, S. S., Redding-Johnson, A. M., Batth, T., et al. (2012). A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS ONE, 7(5), e37010. Park, J. I., Steen, E. J., Burd, H., Evans, S. S., Redding-Johnson, A. M., Batth, T., et al. (2012). A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS ONE, 7(5), e37010.
go back to reference Pepper, J., Baylis, P., & Adler, E. (1959). The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane-water medium. Canadian Journal of Chemistry, 37(8), 1241–1248. Pepper, J., Baylis, P., & Adler, E. (1959). The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane-water medium. Canadian Journal of Chemistry, 37(8), 1241–1248.
go back to reference Perez, J., Wilke, C.R., & Blanch, H.W. (2013). Economics of sugar production with Trichoderma reesei Rutgers C-30. Second Chemical Congress of the North American Continent, Las Vegas, NV, 25–27 August, 1980. Perez, J., Wilke, C.R., & Blanch, H.W. (2013). Economics of sugar production with Trichoderma reesei Rutgers C-30. Second Chemical Congress of the North American Continent, Las Vegas, NV, 25–27 August, 1980.
go back to reference Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, M. J., Jr., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub-and supercritical water technologies. Energy & Environmental Science, 1(1), 32–65. Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, M. J., Jr., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub-and supercritical water technologies. Energy & Environmental Science, 1(1), 32–65.
go back to reference Qing, Q., & Wyman, C. E. (2011). Supplementation with xylanase and b-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnology for Biofuels, 4(1), 18. Qing, Q., & Wyman, C. E. (2011). Supplementation with xylanase and b-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnology for Biofuels, 4(1), 18.
go back to reference Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24), 9624–9630. Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24), 9624–9630.
go back to reference Reese, E. T., Segal, L., & Tripp, V. W. (1957). The effect of cellulase on the degree of polymerization of cellulose and hydrocellulose. Textile Research Journal, 27(8), 626–632. Reese, E. T., Segal, L., & Tripp, V. W. (1957). The effect of cellulase on the degree of polymerization of cellulose and hydrocellulose. Textile Research Journal, 27(8), 626–632.
go back to reference Reese, E. T., Siu, R. G. H., & Levinson, H. S. (1950). The biological degration of the soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. Journal of Bacteriology, 59(4), 485–497. Reese, E. T., Siu, R. G. H., & Levinson, H. S. (1950). The biological degration of the soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. Journal of Bacteriology, 59(4), 485–497.
go back to reference Reilly, P. J. (1987). Proceedings of the seventeenth annual biochemical engineering symposium. Ames, IA: Department of Chemical Engineering, Iowa State University. Reilly, P. J. (1987). Proceedings of the seventeenth annual biochemical engineering symposium. Ames, IA: Department of Chemical Engineering, Iowa State University.
go back to reference Ritter, G. J., Seborg, R. M., & Mitchell, R. L. (1932). Factors affecting quantitative determination of lignin by 72 per cent sulfuric acid method. Industrial and Engineering Chemistry Analytical Edition, 4(2), 202–204. Ritter, G. J., Seborg, R. M., & Mitchell, R. L. (1932). Factors affecting quantitative determination of lignin by 72 per cent sulfuric acid method. Industrial and Engineering Chemistry Analytical Edition, 4(2), 202–204.
go back to reference Rogers, R. D., & Seddon, K. R. (2002). Ionic liquids (industrial applications for green chemistry). A. C. S. symposium series. Washington, DC: American Chemical Society. Rogers, R. D., & Seddon, K. R. (2002). Ionic liquids (industrial applications for green chemistry). A. C. S. symposium series. Washington, DC: American Chemical Society.
go back to reference Saeman, J. F., Bubl, J. L., & Harris, E. E. (1945). Quantitative saccharification of wood and cellulose. Industrial and Engineering Chemistry Analytical Edition, 17(1), 35–37. Saeman, J. F., Bubl, J. L., & Harris, E. E. (1945). Quantitative saccharification of wood and cellulose. Industrial and Engineering Chemistry Analytical Edition, 17(1), 35–37.
go back to reference Saha, B. C., Yoshida, T., Cotta, M. A., & Sonomoto, K. (2013). Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Industrial Crops and Products, 44, 367–372. Saha, B. C., Yoshida, T., Cotta, M. A., & Sonomoto, K. (2013). Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Industrial Crops and Products, 44, 367–372.
go back to reference Sannigrahi, P., Kim, D. H., Jung, S., & Ragauskas, A. (2011). Pseudo-lignin and pretreatment chemistry. Energy & Environmental Science, 4(4), 1306–1310. Sannigrahi, P., Kim, D. H., Jung, S., & Ragauskas, A. (2011). Pseudo-lignin and pretreatment chemistry. Energy & Environmental Science, 4(4), 1306–1310.
go back to reference Saritha, M., Arora, A., & Lata. (2012). Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian Journal of Microbiology, 52(2), 122–130. Saritha, M., Arora, A., & Lata. (2012). Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian Journal of Microbiology, 52(2), 122–130.
go back to reference Sathitsuksanoh, N., Zhu, Z., & Zhang, Y.-H. P. (2012). Cellulose solvent-based pretreatment for corn stover and avicel: Concentrated phosphoric acid versus ionic liquid [BMIM] Cl. Cellulose, 19(4), 1161–1172. Sathitsuksanoh, N., Zhu, Z., & Zhang, Y.-H. P. (2012). Cellulose solvent-based pretreatment for corn stover and avicel: Concentrated phosphoric acid versus ionic liquid [BMIM] Cl. Cellulose, 19(4), 1161–1172.
go back to reference Schmitz, H. (1920). Enzyme action in Echinodontium tinctorium Ellis and Everhart. The Journal of General Physiology, 2(6), 613. Schmitz, H. (1920). Enzyme action in Echinodontium tinctorium Ellis and Everhart. The Journal of General Physiology, 2(6), 613.
go back to reference Selby, K., & Maitland, C. (1967). The cellulase of Trichoderma viride. Biochemistry Journal, 104, 716–724. Selby, K., & Maitland, C. (1967). The cellulase of Trichoderma viride. Biochemistry Journal, 104, 716–724.
go back to reference Selig, M. J., Viamajala, S., Decker, S. R., Tucker, M. P., Himmel, M. E., & Vinzant, T. B. (2007). Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnology Progress, 23(6), 1333–1339. Selig, M. J., Viamajala, S., Decker, S. R., Tucker, M. P., Himmel, M. E., & Vinzant, T. B. (2007). Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnology Progress, 23(6), 1333–1339.
go back to reference Sendich, E., Laser, M., Kim, S., Alizadeh, H., Laureano-Perez, L., Dale, B., et al. (2008). Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresource Technology, 99(17), 8429–8435. Sendich, E., Laser, M., Kim, S., Alizadeh, H., Laureano-Perez, L., Dale, B., et al. (2008). Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresource Technology, 99(17), 8429–8435.
go back to reference Shi, J., Ebrik, M. A., Yang, B., Garlock, R. J., Balan, V., Dale, B. E., et al. (2011a). Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresource Technology, 102(24), 11080–11088. Shi, J., Ebrik, M. A., Yang, B., Garlock, R. J., Balan, V., Dale, B. E., et al. (2011a). Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresource Technology, 102(24), 11080–11088.
go back to reference Shi, J., Ebrik, M. A., & Wyman, C. E. (2011b). Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass. Bioresource Technology, 102(19), 8930–8938. Shi, J., Ebrik, M. A., & Wyman, C. E. (2011b). Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass. Bioresource Technology, 102(19), 8930–8938.
go back to reference Shi, J., Gladden, J. M., Sathitsuksanoh, N., Kambam, P., Sandoval, L., Mitra, D., et al. (2013). One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chemistry, 15(9), 2579–2589. Shi, J., Gladden, J. M., Sathitsuksanoh, N., Kambam, P., Sandoval, L., Mitra, D., et al. (2013). One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chemistry, 15(9), 2579–2589.
go back to reference Shill, K., Padmanabhan, S., Xin, Q., Prausnitz, J. M., Clark, D. S., & Blanch, H. W. (2011). Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnology and Bioengineering, 108(3), 511–520. Shill, K., Padmanabhan, S., Xin, Q., Prausnitz, J. M., Clark, D. S., & Blanch, H. W. (2011). Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnology and Bioengineering, 108(3), 511–520.
go back to reference Simonsen, E. (1898). Spiritus aus cellulose und holz. Angewandte Chemie, 11(10), 219–228. Simonsen, E. (1898). Spiritus aus cellulose und holz. Angewandte Chemie, 11(10), 219–228.
go back to reference Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure. Golden, CO: National Renewable Energy Laboratory. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure. Golden, CO: National Renewable Energy Laboratory.
go back to reference Snelders, J., Dornez, E., Benjelloun-Mlayah, B., Huijgen, W. J. J., de Wild, P. J., Gosselink, R. J. A., et al. (2014). Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresource Technology, 156, 275–282. Snelders, J., Dornez, E., Benjelloun-Mlayah, B., Huijgen, W. J. J., de Wild, P. J., Gosselink, R. J. A., et al. (2014). Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresource Technology, 156, 275–282.
go back to reference Sternberg, D. (1976). A method for increasing cellulase production by Trichoderma viride. Biotechnology and Bioengineering, 18(12), 1751–1760. Sternberg, D. (1976). A method for increasing cellulase production by Trichoderma viride. Biotechnology and Bioengineering, 18(12), 1751–1760.
go back to reference Stöcker, M. (2008). Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie International Edition, 47(48), 9200–9211. Stöcker, M. (2008). Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie International Edition, 47(48), 9200–9211.
go back to reference Studer, M. H., DeMartini, J. D., Brethauer, S., McKenzie, H. L., & Wyman, C. E. (2010). Engineering of a high‐throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release. Biotechnology and Bioengineering, 105(2), 231–238. Studer, M. H., DeMartini, J. D., Brethauer, S., McKenzie, H. L., & Wyman, C. E. (2010). Engineering of a high‐throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release. Biotechnology and Bioengineering, 105(2), 231–238.
go back to reference Sun, N., Liu, H., Sathitsuksanoh, N., Stavila, V., Sawant, M., Bonito, A., et al. (2013). Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels, 6(1), 1–15. Sun, N., Liu, H., Sathitsuksanoh, N., Stavila, V., Sawant, M., Bonito, A., et al. (2013). Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels, 6(1), 1–15.
go back to reference Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124(18), 4974–4975. Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124(18), 4974–4975.
go back to reference Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.
go back to reference Tanjore, D., Marshall, M. N., Richard, T. L. (2009). Biological pretreatments of corn stover with filamentous fungi. The 31st symposium on biotechnology for fuels and chemicals. Tanjore, D., Marshall, M. N., Richard, T. L. (2009). Biological pretreatments of corn stover with filamentous fungi. The 31st symposium on biotechnology for fuels and chemicals.
go back to reference Tanjore, D., Shi, J., & Wyman, C. (2011). Dilute acid and hydrothermal pretreatment of cellulosic biomass. In B. A. Simmons (Ed.), Chemical and biochemical catalysis for next generation biofuels (pp. 64–88). London: Royal Society of Chemistry. Tanjore, D., Shi, J., & Wyman, C. (2011). Dilute acid and hydrothermal pretreatment of cellulosic biomass. In B. A. Simmons (Ed.), Chemical and biochemical catalysis for next generation biofuels (pp. 64–88). London: Royal Society of Chemistry.
go back to reference Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of biomass: Deriving more value from waste. Science, 337(6095), 695–699. Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., & Poliakoff, M. (2012). Valorization of biomass: Deriving more value from waste. Science, 337(6095), 695–699.
go back to reference Vidal, B. C., Jr., Dien, B. S., Ting, K., & Singh, V. (2011). Influence of feedstock particle size on lignocellulose conversion—A review. Applied Biochemistry and Biotechnology, 164(8), 1405–1421. Vidal, B. C., Jr., Dien, B. S., Ting, K., & Singh, V. (2011). Influence of feedstock particle size on lignocellulose conversion—A review. Applied Biochemistry and Biotechnology, 164(8), 1405–1421.
go back to reference Wald, S., Wilke, C. R., & Blanch, H. W. (1984). Kinetics of the enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 26(3), 221–230. Wald, S., Wilke, C. R., & Blanch, H. W. (1984). Kinetics of the enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 26(3), 221–230.
go back to reference Wang, W., Chen, X., Donohoe, B. S., Ciesielski, P. N., Katahira, R., Kuhn, E. M., et al. (2014). Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover. Part 1: Chemical and physical substrate analysis. Biotechnology for Biofuels, 7(1), 1–13. Wang, W., Chen, X., Donohoe, B. S., Ciesielski, P. N., Katahira, R., Kuhn, E. M., et al. (2014). Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover. Part 1: Chemical and physical substrate analysis. Biotechnology for Biofuels, 7(1), 1–13.
go back to reference Wildschut, J., Smit, A. T., Reith, J. H., & Huijgen, W. J. J. (2013). Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresource Technology, 135, 58–66. Wildschut, J., Smit, A. T., Reith, J. H., & Huijgen, W. J. J. (2013). Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresource Technology, 135, 58–66.
go back to reference Wolfgang, G., & Hans, R. (1937). Process of preparing an enzyme from mold. Google Patents. Wolfgang, G., & Hans, R. (1937). Process of preparing an enzyme from mold. Google Patents.
go back to reference Wood, T. (1968). Cellulolytic enzyme system of Trichoderma koningii. Separation of components attacking native cotton. Biochemistry Journal, 109, 217–227. Wood, T. (1968). Cellulolytic enzyme system of Trichoderma koningii. Separation of components attacking native cotton. Biochemistry Journal, 109, 217–227.
go back to reference Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities. In A. Willis & S. T. K. Wood (Eds.), Methods in enzymology (Vol. 160, pp. 87–112). Waltham, MA: Academic. Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities. In A. Willis & S. T. K. Wood (Eds.), Methods in enzymology (Vol. 160, pp. 87–112). Waltham, MA: Academic.
go back to reference Wu, D., Li, Q., Wang, D., & Dong, Y. (2013). Enzymatic hydrolysis and succinic acid fermentation from steam-exploded corn stalk at high solid concentration by recombinant Escherichia coli. Applied Biochemistry and Biotechnology, 170(8), 1942–1949. Wu, D., Li, Q., Wang, D., & Dong, Y. (2013). Enzymatic hydrolysis and succinic acid fermentation from steam-exploded corn stalk at high solid concentration by recombinant Escherichia coli. Applied Biochemistry and Biotechnology, 170(8), 1942–1949.
go back to reference Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959–1966. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96(18), 1959–1966.
go back to reference Yang, B., & Wyman, C. E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 86(1), 88–98. Yang, B., & Wyman, C. E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 86(1), 88–98.
go back to reference Young, R. D. (2014). Virdia to build $60 million biochemical plant in Lafourche Parish. NOLA.com, vol 2014. Louisiana. Young, R. D. (2014). Virdia to build $60 million biochemical plant in Lafourche Parish. NOLA.com, vol 2014. Louisiana.
go back to reference Yoo, J., Alavi, S., Vadlani, P., & Amanor-Boadu, V. (2011). Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technology, 102(16), 7583–7590. Yoo, J., Alavi, S., Vadlani, P., & Amanor-Boadu, V. (2011). Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technology, 102(16), 7583–7590.
go back to reference Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824. Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824.
go back to reference Zheng, Y., Lin, H. M., & Tsao, G. T. (1998). Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnology Progress, 14(6), 890–896. Zheng, Y., Lin, H. M., & Tsao, G. T. (1998). Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnology Progress, 14(6), 890–896.
go back to reference Zhu, Z., Sathitsuksanoh, N., Vinzant, T., Schell, D. J., McMillan, J. D., & Zhang, Y. H. P. (2009). Comparative study of corn stover pretreated by dilute acid and cellulose solvent‐based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology and Bioengineering, 103(4), 715–724. Zhu, Z., Sathitsuksanoh, N., Vinzant, T., Schell, D. J., McMillan, J. D., & Zhang, Y. H. P. (2009). Comparative study of corn stover pretreated by dilute acid and cellulose solvent‐based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology and Bioengineering, 103(4), 715–724.
go back to reference Zhu, S., Wu, Y., Yu, Z., Liao, J., & Zhang, Y. (2005). Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 40(9), 3082–3086. Zhu, S., Wu, Y., Yu, Z., Liao, J., & Zhang, Y. (2005). Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 40(9), 3082–3086.
Metadata
Title
A Systems View of Lignocellulose Hydrolysis
Authors
Deepti Tanjore
Tom L. Richard
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-17915-5_19