Skip to main content
Top
Published in: Acta Mechanica 9/2020

27-06-2020 | Original Paper

A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of spatial beam structures

Authors: Duy Vo, Pruettha Nanakorn, Tinh Quoc Bui

Published in: Acta Mechanica | Issue 9/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper concerns a novel isogeometric Timoshenko beam formulation for a geometrically nonlinear analysis of spatial beams using the total Lagrangian description. Constitutive laws for hyperelastic materials, whose behavior varies with their deformations, are widely defined by using strain energy density functions that are written in terms of the Green–Lagrange strain tensor. Many finite element beam formulations for geometrically nonlinear analyses of spatial beams are developed using the Green–Lagrange strain tensor and its energy conjugate, the second Piola–Kirchhoff stress tensor. Unfortunately, there virtually exist no isogeometric Timoshenko beam formulations for this type of analysis that are derived by using this energy conjugate pair. To allow the possibility of considering hyperelastic materials, the present isogeometric beam formulation is developed in the total Lagrangian description using the Green–Lagrange strain tensor and the second Piola–Kirchhoff stress tensor. The proposed formulation is capable of simulating beam structures that are subjected to large displacements and rotations, without any restriction in magnitude. Three-dimensional beam configurations are reduced into one-dimensional structures using the beam axis and director vectors of the cross sections. The cross-sectional rotation along the beam axis is represented by an orthogonal tensor, which is parameterized by a vector-like parameter. Updating the cross-sectional rotations is performed purely by natural exponentiation and superposition of relevant rotational quantities. To show the accuracy and efficiency of the proposed beam formulation, some benchmark and well-established numerical examples with various types of beam, i.e., straight, curved, pre-twisted beams, are analyzed. The obtained results are compared with those results in the literature, obtained from both analytical and numerical methods.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reissner, E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52(2), 87–95 (1973)MATH Reissner, E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52(2), 87–95 (1973)MATH
2.
go back to reference Bathe, K.-J., Bolourchi, S.: Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng. 14(7), 961–986 (1979)MATH Bathe, K.-J., Bolourchi, S.: Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng. 14(7), 961–986 (1979)MATH
3.
go back to reference Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)MATH Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)MATH
4.
go back to reference Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986)MATH Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986)MATH
5.
go back to reference Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 26(11), 2403–2438 (1988)MATH Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 26(11), 2403–2438 (1988)MATH
6.
go back to reference Crisfield, M.A.: A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput. Methods Appl. Mech. Eng. 81(2), 131–150 (1990)MATH Crisfield, M.A.: A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput. Methods Appl. Mech. Eng. 81(2), 131–150 (1990)MATH
7.
go back to reference Ibrahimbegović, A., Frey, F., Kožar, I.: Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int. J. Numer. Methods Eng. 38(21), 3653–3673 (1995)MathSciNetMATH Ibrahimbegović, A., Frey, F., Kožar, I.: Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int. J. Numer. Methods Eng. 38(21), 3653–3673 (1995)MathSciNetMATH
8.
go back to reference Ibrahimbegović, A.: On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122(1), 11–26 (1995)MATH Ibrahimbegović, A.: On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput. Methods Appl. Mech. Eng. 122(1), 11–26 (1995)MATH
9.
go back to reference Pai, P.F., Palazotto, A.N.: Large-deformation analysis of flexible beams. Int. J. Solids Struct. 33(9), 1335–1353 (1996)MATH Pai, P.F., Palazotto, A.N.: Large-deformation analysis of flexible beams. Int. J. Solids Struct. 33(9), 1335–1353 (1996)MATH
10.
go back to reference Ibrahimbegovic, A.: On the choice of finite rotation parameters. Comput. Methods Appl. Mech. Eng. 149(1), 49–71 (1997)MathSciNetMATH Ibrahimbegovic, A.: On the choice of finite rotation parameters. Comput. Methods Appl. Mech. Eng. 149(1), 49–71 (1997)MathSciNetMATH
11.
go back to reference Meier, C., Popp, A., Wall, W.A.: An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 278, 445–478 (2014)MathSciNetMATH Meier, C., Popp, A., Wall, W.A.: An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 278, 445–478 (2014)MathSciNetMATH
12.
go back to reference Greco, L., Cuomo, M.: Consistent tangent operator for an exact Kirchhoff rod model. Contin. Mech. Thermodyn. 27(4), 861–877 (2015)MathSciNetMATH Greco, L., Cuomo, M.: Consistent tangent operator for an exact Kirchhoff rod model. Contin. Mech. Thermodyn. 27(4), 861–877 (2015)MathSciNetMATH
13.
go back to reference Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Arch. Comput. Methods Eng. 26(1), 163–243 (2019)MathSciNet Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Arch. Comput. Methods Eng. 26(1), 163–243 (2019)MathSciNet
14.
go back to reference Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)MathSciNetMATH Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)MathSciNetMATH
15.
go back to reference Kiendl, J., Bletzinger, K.U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198(49–52), 3902–3914 (2009)MathSciNetMATH Kiendl, J., Bletzinger, K.U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198(49–52), 3902–3914 (2009)MathSciNetMATH
16.
go back to reference Kiendl, J., Bazilevs, Y., Hsu, M.C., Wüchner, R., Bletzinger, K.U.: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199(37–40), 2403–2416 (2010)MathSciNetMATH Kiendl, J., Bazilevs, Y., Hsu, M.C., Wüchner, R., Bletzinger, K.U.: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199(37–40), 2403–2416 (2010)MathSciNetMATH
17.
go back to reference Dornisch, W., Klinkel, S., Simeon, B.: Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors. Comput. Methods Appl. Mech. Eng. 253, 491–504 (2013)MathSciNetMATH Dornisch, W., Klinkel, S., Simeon, B.: Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors. Comput. Methods Appl. Mech. Eng. 253, 491–504 (2013)MathSciNetMATH
18.
go back to reference Dornisch, W., Klinkel, S.: Treatment of Reissner–Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric framework. Comput. Methods Appl. Mech. Eng. 276, 35–66 (2014)MathSciNetMATH Dornisch, W., Klinkel, S.: Treatment of Reissner–Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric framework. Comput. Methods Appl. Mech. Eng. 276, 35–66 (2014)MathSciNetMATH
19.
go back to reference Dornisch, W., Müller, R., Klinkel, S.: An efficient and robust rotational formulation for isogeometric Reissner–Mindlin shell elements. Comput. Methods Appl. Mech. Eng. 303, 1–34 (2016)MathSciNetMATH Dornisch, W., Müller, R., Klinkel, S.: An efficient and robust rotational formulation for isogeometric Reissner–Mindlin shell elements. Comput. Methods Appl. Mech. Eng. 303, 1–34 (2016)MathSciNetMATH
20.
go back to reference Yu, T., Hu, H., Zhang, J., Bui, T.Q.: Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory. Thin Walled Struct. 138, 1–14 (2019) Yu, T., Hu, H., Zhang, J., Bui, T.Q.: Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory. Thin Walled Struct. 138, 1–14 (2019)
21.
go back to reference Yu, T., Zhang, J., Hu, H., Bui, T.Q.: A novel size-dependent quasi-3D isogeometric beam model for two-directional fg microbeams analysis. Compos. Struct. 211, 76–88 (2019) Yu, T., Zhang, J., Hu, H., Bui, T.Q.: A novel size-dependent quasi-3D isogeometric beam model for two-directional fg microbeams analysis. Compos. Struct. 211, 76–88 (2019)
22.
go back to reference Fang, W., Yu, T., Van Lich, L., Bui, T.Q.: Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis. Compos. Struct. 221, 110890 (2019) Fang, W., Yu, T., Van Lich, L., Bui, T.Q.: Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis. Compos. Struct. 221, 110890 (2019)
23.
go back to reference Vo, D., Nanakorn, P.: A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of planar curved beams. Acta Mech. 231, 2827–2847 (2020)MathSciNetMATH Vo, D., Nanakorn, P.: A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of planar curved beams. Acta Mech. 231, 2827–2847 (2020)MathSciNetMATH
24.
go back to reference Lai, W., Yu, T., Bui, T.Q., Wang, Z., Curiel-Sosa, J.L., Das, R., Hirose, S.: 3-d elasto-plastic large deformations: IGA simulation by Bézier extraction of NURBS. Adv. Eng. Softw. 108, 68–82 (2017) Lai, W., Yu, T., Bui, T.Q., Wang, Z., Curiel-Sosa, J.L., Das, R., Hirose, S.: 3-d elasto-plastic large deformations: IGA simulation by Bézier extraction of NURBS. Adv. Eng. Softw. 108, 68–82 (2017)
25.
go back to reference Yu, T., Lai, W., Bui, T.Q.: Three-dimensional elastoplastic solids simulation by an effective IGA based on Bézier extraction of NURBS. Int. J. Mech. Mater. Des. 15(1), 175–197 (2019) Yu, T., Lai, W., Bui, T.Q.: Three-dimensional elastoplastic solids simulation by an effective IGA based on Bézier extraction of NURBS. Int. J. Mech. Mater. Des. 15(1), 175–197 (2019)
26.
go back to reference Raknes, S.B., Deng, X., Bazilevs, Y., Benson, D.J., Mathisen, K.M., Kvamsdal, T.: Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput. Methods Appl. Mech. Eng. 263, 127–143 (2013)MathSciNetMATH Raknes, S.B., Deng, X., Bazilevs, Y., Benson, D.J., Mathisen, K.M., Kvamsdal, T.: Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput. Methods Appl. Mech. Eng. 263, 127–143 (2013)MathSciNetMATH
27.
go back to reference Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)MathSciNetMATH Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)MathSciNetMATH
28.
go back to reference Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)MATH Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)MATH
29.
go back to reference Bauer, A.M., Breitenberger, M., Philipp, B., Wüchner, R., Bletzinger, K.U.: Nonlinear isogeometric spatial Bernoulli beam. Comput. Methods Appl. Mech. Eng. 303, 101–127 (2016)MathSciNetMATH Bauer, A.M., Breitenberger, M., Philipp, B., Wüchner, R., Bletzinger, K.U.: Nonlinear isogeometric spatial Bernoulli beam. Comput. Methods Appl. Mech. Eng. 303, 101–127 (2016)MathSciNetMATH
30.
go back to reference Radenković, G., Borković, A.: Linear static isogeometric analysis of an arbitrarily curved spatial Bernoulli–Euler beam. Comput. Methods Appl. Mech. Eng. 341, 360–396 (2018)MathSciNetMATH Radenković, G., Borković, A.: Linear static isogeometric analysis of an arbitrarily curved spatial Bernoulli–Euler beam. Comput. Methods Appl. Mech. Eng. 341, 360–396 (2018)MathSciNetMATH
31.
go back to reference Auricchio, F., Beirão da Veiga, L., Kiendl, J., Lovadina, C., Reali, A.: Locking-free isogeometric collocation methods for spatial Timoshenko rods. Comput. Methods Appl. Mech. Eng. 263, 113–126 (2013)MathSciNetMATH Auricchio, F., Beirão da Veiga, L., Kiendl, J., Lovadina, C., Reali, A.: Locking-free isogeometric collocation methods for spatial Timoshenko rods. Comput. Methods Appl. Mech. Eng. 263, 113–126 (2013)MathSciNetMATH
32.
go back to reference Weeger, O., Yeung, S.-K., Dunn, M.L.: Isogeometric collocation methods for Cosserat rods and rod structures. Comput. Methods Appl. Mech. Eng. 316, 100–122 (2017)MathSciNetMATH Weeger, O., Yeung, S.-K., Dunn, M.L.: Isogeometric collocation methods for Cosserat rods and rod structures. Comput. Methods Appl. Mech. Eng. 316, 100–122 (2017)MathSciNetMATH
33.
go back to reference Marino, E.: Isogeometric collocation for three-dimensional geometrically exact shear-deformable beams. Comput. Methods Appl. Mech. Eng. 307, 383–410 (2016)MathSciNetMATH Marino, E.: Isogeometric collocation for three-dimensional geometrically exact shear-deformable beams. Comput. Methods Appl. Mech. Eng. 307, 383–410 (2016)MathSciNetMATH
34.
go back to reference Marino, E.: Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature. Comput. Methods Appl. Mech. Eng. 324, 546–572 (2017)MathSciNetMATH Marino, E.: Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature. Comput. Methods Appl. Mech. Eng. 324, 546–572 (2017)MathSciNetMATH
35.
go back to reference Weeger, O., Narayanan, B., De Lorenzis, L., Kiendl, J., Dunn, Martin L.: An isogeometric collocation method for frictionless contact of Cosserat rods. Comput. Methods Appl. Mech. Eng. 321, 361–382 (2017)MathSciNetMATH Weeger, O., Narayanan, B., De Lorenzis, L., Kiendl, J., Dunn, Martin L.: An isogeometric collocation method for frictionless contact of Cosserat rods. Comput. Methods Appl. Mech. Eng. 321, 361–382 (2017)MathSciNetMATH
36.
go back to reference Weeger, O., Narayanan, B., Dunn, M.L.: Isogeometric shape optimization of nonlinear, curved 3D beams and beam structures. Comput. Methods Appl. Mech. Eng. 345, 26–51 (2019)MathSciNetMATH Weeger, O., Narayanan, B., Dunn, M.L.: Isogeometric shape optimization of nonlinear, curved 3D beams and beam structures. Comput. Methods Appl. Mech. Eng. 345, 26–51 (2019)MathSciNetMATH
37.
go back to reference Marino, E., Kiendl, J., De Lorenzis, L.: Explicit isogeometric collocation for the dynamics of three-dimensional beams undergoing finite motions. Comput. Methods Appl. Mech. Eng. 343, 530–549 (2019)MathSciNetMATH Marino, E., Kiendl, J., De Lorenzis, L.: Explicit isogeometric collocation for the dynamics of three-dimensional beams undergoing finite motions. Comput. Methods Appl. Mech. Eng. 343, 530–549 (2019)MathSciNetMATH
38.
go back to reference Marino, E., Kiendl, J., De Lorenzis, L.: Isogeometric collocation for implicit dynamics of three-dimensional beams undergoing finite motions. Comput. Methods Appl. Mech. Eng. 356, 548–570 (2019)MathSciNetMATH Marino, E., Kiendl, J., De Lorenzis, L.: Isogeometric collocation for implicit dynamics of three-dimensional beams undergoing finite motions. Comput. Methods Appl. Mech. Eng. 356, 548–570 (2019)MathSciNetMATH
39.
go back to reference Choi, M.-J., Cho, S.: Isogeometric configuration design sensitivity analysis of geometrically exact shear-deformable beam structures. Comput. Methods Appl. Mech. Eng. 351, 153–183 (2019)MathSciNetMATH Choi, M.-J., Cho, S.: Isogeometric configuration design sensitivity analysis of geometrically exact shear-deformable beam structures. Comput. Methods Appl. Mech. Eng. 351, 153–183 (2019)MathSciNetMATH
40.
go back to reference Chen, L., Nguyen-Thanh, N., Nguyen-Xuan, H., Rabczuk, T., Bordas, S.P.A., Limbert, G.: Explicit finite deformation analysis of isogeometric membranes. Comput. Methods Appl. Mech. Eng. 277, 104–130 (2014)MathSciNetMATH Chen, L., Nguyen-Thanh, N., Nguyen-Xuan, H., Rabczuk, T., Bordas, S.P.A., Limbert, G.: Explicit finite deformation analysis of isogeometric membranes. Comput. Methods Appl. Mech. Eng. 277, 104–130 (2014)MathSciNetMATH
41.
go back to reference Kiendl, J., Hsu, M.-C., Wu, M.C.H., Reali, A.: Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput. Methods Appl. Mech. Eng. 291, 280–303 (2015)MathSciNetMATH Kiendl, J., Hsu, M.-C., Wu, M.C.H., Reali, A.: Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput. Methods Appl. Mech. Eng. 291, 280–303 (2015)MathSciNetMATH
42.
go back to reference Tepole, A.B., Kabaria, H., Bletzinger, K.-U., Kuhl, E.: Isogeometric Kirchhoff–Love shell formulations for biological membranes. Comput. Methods Appl. Mech. Eng. 293, 328–347 (2015)MathSciNetMATH Tepole, A.B., Kabaria, H., Bletzinger, K.-U., Kuhl, E.: Isogeometric Kirchhoff–Love shell formulations for biological membranes. Comput. Methods Appl. Mech. Eng. 293, 328–347 (2015)MathSciNetMATH
43.
go back to reference Argyris, J.: An excursion into large rotations. Comput. Methods Appl. Mech. Eng. 32(1), 85–155 (1982)MathSciNetMATH Argyris, J.: An excursion into large rotations. Comput. Methods Appl. Mech. Eng. 32(1), 85–155 (1982)MathSciNetMATH
44.
go back to reference Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, New York (1997)MATH Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, New York (1997)MATH
45.
go back to reference Young, W.C., Budynas, R.G., Sadegh, A.M.: Roak’s Fomulas for Stress and Strain, 8th edn. McGraw-Hill, New York (2012) Young, W.C., Budynas, R.G., Sadegh, A.M.: Roak’s Fomulas for Stress and Strain, 8th edn. McGraw-Hill, New York (2012)
46.
go back to reference Adam, C., Bouabdallah, S., Zarroug, M., Maitournam, H.: Improved numerical integration for locking treatment in isogeometric structural elements, Part U: beams. Comput. Methods Appl. Mech. Eng. 279, 1–28 (2014)MathSciNetMATH Adam, C., Bouabdallah, S., Zarroug, M., Maitournam, H.: Improved numerical integration for locking treatment in isogeometric structural elements, Part U: beams. Comput. Methods Appl. Mech. Eng. 279, 1–28 (2014)MathSciNetMATH
47.
go back to reference Bazilevs, Y., Beirão Da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(07), 1031–1090 (2006)MathSciNetMATH Bazilevs, Y., Beirão Da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(07), 1031–1090 (2006)MathSciNetMATH
48.
go back to reference Crisfield, M.A.: Non-Linear Finite Element Analysis of Solids and Structures. Wiley, Chichester (2000) Crisfield, M.A.: Non-Linear Finite Element Analysis of Solids and Structures. Wiley, Chichester (2000)
49.
go back to reference Smoleński, W.M.: Statically and kinematically exact nonlinear theory of rods and its numerical verification. Comput. Methods Appl. Mech. Eng. 178(1), 89–113 (1999)MathSciNetMATH Smoleński, W.M.: Statically and kinematically exact nonlinear theory of rods and its numerical verification. Comput. Methods Appl. Mech. Eng. 178(1), 89–113 (1999)MathSciNetMATH
50.
go back to reference Goto, Y., Watanabe, Y., Kasugai, T., Obata, M.: Elastic buckling phenomenon applicable to deployable rings. Int. J. Solids Struct. 29(7), 893–909 (1992) Goto, Y., Watanabe, Y., Kasugai, T., Obata, M.: Elastic buckling phenomenon applicable to deployable rings. Int. J. Solids Struct. 29(7), 893–909 (1992)
51.
go back to reference Klinkel, S., Govindjee, S.: Using finite strain 3D-material models in beam and shell elements. Eng. Comput. 19(3), 254–271 (2002)MATH Klinkel, S., Govindjee, S.: Using finite strain 3D-material models in beam and shell elements. Eng. Comput. 19(3), 254–271 (2002)MATH
Metadata
Title
A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of spatial beam structures
Authors
Duy Vo
Pruettha Nanakorn
Tinh Quoc Bui
Publication date
27-06-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 9/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02723-6

Other articles of this Issue 9/2020

Acta Mechanica 9/2020 Go to the issue

Premium Partners