Skip to main content
Top
Published in: Experiments in Fluids 7/2023

01-07-2023 | Research Article

A velocity decomposition-based 3D optical flow method for accurate Tomo-PIV measurement

Authors: Menggang Kang, Hua Yang, Zhouping Yin, Qi Gao, Xiaoyu Liu

Published in: Experiments in Fluids | Issue 7/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

3D velocity field estimation is the key to high spatial resolution and high-accuracy measurements in tomographic particle image velocimetry (Tomo-PIV), especially when characterizing flow fields with delicate vortex structures. However, the cross-correlation velocity estimation method has limited spatial resolution due to the limitation of the interrogation sub-volume size. The 3D optical flow method can improve the spatial resolution of the velocity field, but its accuracy needs to be improved because it does not take into account the physical properties of the fluids. In this study, we propose a novel velocity decomposition-based 3D variational optical flow (VD-3DVOF) method to achieve high spatial resolution and high-accuracy measurement of 3D fluids. First, we present a novel regularization term based on the velocity decomposition theorem to constrain the different physical quantities, which can prevent the physical quantities from being over-smoothed. Second, we present a novel data term based on particle volume reconstruction feature weighting to reduce the influence of reconstruction errors on the velocity field estimation accuracy. Third, we present a multiscale technique and a volume warping operation to prevent the solution from falling into local optimal solutions. The newly proposed method considers both the physical properties of the fluid and the errors of reconstructed particle volumes. Velocity fields are estimated over synthetic and experimental particle volumes, and the results and comparisons show that the newly proposed VD-3DVOF method successfully achieves better performance and greater measurement accuracy than existing 3D motion estimation methods.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alvarez L, Castano C, García M, Krissian K, Mazorra L, Salgado A, Sánchez J (2009) A new energy-based method for 3d motion estimation of incompressible piv flows. Comput Vision Image Underst 113(7):802–810 Alvarez L, Castano C, García M, Krissian K, Mazorra L, Salgado A, Sánchez J (2009) A new energy-based method for 3d motion estimation of incompressible piv flows. Comput Vision Image Underst 113(7):802–810
go back to reference Atkinson C, Soria J (2009) An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids 47(4):553–568 Atkinson C, Soria J (2009) An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids 47(4):553–568
go back to reference Barron JL, Thacker NA (2005) Tutorial: Computing 2d and 3d optical flow. Imaging science and biomedical engineering division, medical school, university of manchester 1 Barron JL, Thacker NA (2005) Tutorial: Computing 2d and 3d optical flow. Imaging science and biomedical engineering division, medical school, university of manchester 1
go back to reference Bhatia H, Norgard G, Pascucci V, Bremer PT (2012) The Helmholtz-Hodge decomposition a survey. IEEE Trans Visualization Comput Gr 19(8):1386–1404 Bhatia H, Norgard G, Pascucci V, Bremer PT (2012) The Helmholtz-Hodge decomposition a survey. IEEE Trans Visualization Comput Gr 19(8):1386–1404
go back to reference Cai S, Mémin E, Dérian P, Xu C (2018) Motion estimation under location uncertainty for turbulent fluid flows. Exp Fluids 59(1):1–17 Cai S, Mémin E, Dérian P, Xu C (2018) Motion estimation under location uncertainty for turbulent fluid flows. Exp Fluids 59(1):1–17
go back to reference Cai S, Liang J, Gao Q, Xu C, Wei R (2019) Particle image velocimetry based on a deep learning motion estimator. IEEE Trans Instrum Meas 69(6):3538–3554 Cai S, Liang J, Gao Q, Xu C, Wei R (2019) Particle image velocimetry based on a deep learning motion estimator. IEEE Trans Instrum Meas 69(6):3538–3554
go back to reference Chen X, Zillé P, Shao L, Corpetti T (2015) Optical flow for incompressible turbulence motion estimation. Exp Fluids 56(1):1–14 Chen X, Zillé P, Shao L, Corpetti T (2015) Optical flow for incompressible turbulence motion estimation. Exp Fluids 56(1):1–14
go back to reference Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp fluids 40(1):80–97 Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp fluids 40(1):80–97
go back to reference De Silva C, Baidya R, Marusic I (2012) Enhancing Tomo-Piv reconstruction quality by reducing ghost particles. Meas Sci Technol 24(2):024010 De Silva C, Baidya R, Marusic I (2012) Enhancing Tomo-Piv reconstruction quality by reducing ghost particles. Meas Sci Technol 24(2):024010
go back to reference Discetti S, Natale A, Astarita T (2013) Spatial filtering improved tomographic PIV. Exp fluids 54(4):1–13 Discetti S, Natale A, Astarita T (2013) Spatial filtering improved tomographic PIV. Exp fluids 54(4):1–13
go back to reference Drulea M, Nedevschi S (2011) Total variation regularization of local-global optical flow. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, pp 318–323 Drulea M, Nedevschi S (2011) Total variation regularization of local-global optical flow. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, pp 318–323
go back to reference Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947 Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947
go back to reference Elsinga G, Westerweel J, Scarano F, Novara M (2011) On the velocity of ghost particles and the bias errors in tomographic-PIV. Exp Fluids 50(4):825–838 Elsinga G, Westerweel J, Scarano F, Novara M (2011) On the velocity of ghost particles and the bias errors in tomographic-PIV. Exp Fluids 50(4):825–838
go back to reference Elsinga G, Van Oudheusden B, Scarano F (2006a) Experimental assessment of tomographic-PIV accuracy. In: 13th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, paper, Citeseer, vol 20 Elsinga G, Van Oudheusden B, Scarano F (2006a) Experimental assessment of tomographic-PIV accuracy. In: 13th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, paper, Citeseer, vol 20
go back to reference Gao Q, Pan S, Wang H, Wei R, Wang J (2021) Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning. Adv Aerodyn 3(1):1–14 Gao Q, Pan S, Wang H, Wei R, Wang J (2021) Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning. Adv Aerodyn 3(1):1–14
go back to reference Heitz D, Mémin E, Schnörr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp Fluids 48(3):369–393 Heitz D, Mémin E, Schnörr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp Fluids 48(3):369–393
go back to reference Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203MATH Horn BK, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203MATH
go back to reference Kähler CJ, Scharnowski S, Cierpka C (2012) On the resolution limit of digital particle image velocimetry. Exp Fluids 52(6):1629–1639 Kähler CJ, Scharnowski S, Cierpka C (2012) On the resolution limit of digital particle image velocimetry. Exp Fluids 52(6):1629–1639
go back to reference Kähler CJ, Astarita T, Vlachos PP, Sakakibara J, Hain R, Discetti S, La Foy R, Cierpka C (2016) Main results of the 4th international PIV challenge. Exp Fluids 57(6):1–71 Kähler CJ, Astarita T, Vlachos PP, Sakakibara J, Hain R, Discetti S, La Foy R, Cierpka C (2016) Main results of the 4th international PIV challenge. Exp Fluids 57(6):1–71
go back to reference Kumashiro K, Steinberg AM, Yano M (2019) High spatial resolution 3d fluid velocimetry by tomographic particle flow velocimetry. In: AIAA Scitech 2019 Forum, p 0269 Kumashiro K, Steinberg AM, Yano M (2019) High spatial resolution 3d fluid velocimetry by tomographic particle flow velocimetry. In: AIAA Scitech 2019 Forum, p 0269
go back to reference Lagemann C, Lagemann K, Mukherjee S, Schröder W (2021) Deep recurrent optical flow learning for particle image velocimetry data. Nat Mach Intell 3(7):641–651 Lagemann C, Lagemann K, Mukherjee S, Schröder W (2021) Deep recurrent optical flow learning for particle image velocimetry data. Nat Mach Intell 3(7):641–651
go back to reference Lagemann C, Lagemann K, Mukherjee S, Schröder W (2022) Generalization of deep recurrent optical flow estimation for particle-image velocimetry data. Meast Sci Technol 33(9):094003 Lagemann C, Lagemann K, Mukherjee S, Schröder W (2022) Generalization of deep recurrent optical flow estimation for particle-image velocimetry data. Meast Sci Technol 33(9):094003
go back to reference Lasinger K, Vogel C, Pock T, Schindler K (2018) Variational 3d-PIV with sparse descriptors. Meas Sci Technol 29(6):064010 Lasinger K, Vogel C, Pock T, Schindler K (2018) Variational 3d-PIV with sparse descriptors. Meas Sci Technol 29(6):064010
go back to reference Lasinger K, Vogel C, Pock T, Schindler K (2019) 3D fluid flow estimation with integrated particle reconstruction. International Journal of Computer Vision pp 1–16 Lasinger K, Vogel C, Pock T, Schindler K (2019) 3D fluid flow estimation with integrated particle reconstruction. International Journal of Computer Vision pp 1–16
go back to reference Lasinger K, Vogel C, Schindler K (2017a) Variational 3d-piv for incompressible fluid flow estimation. In: 12th International Symposium on Particle Image Velocimetry (ISPIV 2017) Lasinger K, Vogel C, Schindler K (2017a) Variational 3d-piv for incompressible fluid flow estimation. In: 12th International Symposium on Particle Image Velocimetry (ISPIV 2017)
go back to reference Lasinger K, Vogel C, Schindler K (2017b) Volumetric flow estimation for incompressible fluids using the stationary stokes equations. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2565–2573 Lasinger K, Vogel C, Schindler K (2017b) Volumetric flow estimation for incompressible fluids using the stationary stokes equations. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2565–2573
go back to reference Letelier JA, Herrera P, Mujica N, Ortega JH (2016) Enhancement of synthetic schlieren image resolution using total variation optical flow: application to thermal experiments in a hele-shaw cell. Exp Fluids 57(2):1–14 Letelier JA, Herrera P, Mujica N, Ortega JH (2016) Enhancement of synthetic schlieren image resolution using total variation optical flow: application to thermal experiments in a hele-shaw cell. Exp Fluids 57(2):1–14
go back to reference Li Y, Perlman E, Wan M, Yang Y, Meneveau C, Burns R, Chen S, Szalay A, Eyink G (2008) A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J Turbul 9:N31MATH Li Y, Perlman E, Wan M, Yang Y, Meneveau C, Burns R, Chen S, Szalay A, Eyink G (2008) A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J Turbul 9:N31MATH
go back to reference Liang J, Cai S, Xu C, Chu J (2020) Filtering enhanced tomographic PIV reconstruction based on deep neural networks. IET Cyber-Syst Robot 2(1):43–52 Liang J, Cai S, Xu C, Chu J (2020) Filtering enhanced tomographic PIV reconstruction based on deep neural networks. IET Cyber-Syst Robot 2(1):43–52
go back to reference Liang J, Xu C, Cai S (2022) Gotflow3d: Recurrent graph optimal transport for learning 3d flow motion in particle tracking. arXiv preprint arXiv:2210.17012 Liang J, Xu C, Cai S (2022) Gotflow3d: Recurrent graph optimal transport for learning 3d flow motion in particle tracking. arXiv preprint arXiv:​2210.​17012
go back to reference Liu T, Merat A, Makhmalbaf M, Fajardo C, Merati P (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images. Exp Fluids 56(8):1–23 Liu T, Merat A, Makhmalbaf M, Fajardo C, Merati P (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images. Exp Fluids 56(8):1–23
go back to reference Lu J, Yang H, Zhang Q, Yin Z (2019) A field-segmentation-based variational optical flow method for PIV measurements of nonuniform flows. Exp Fluids 60(9):1–17 Lu J, Yang H, Zhang Q, Yin Z (2019) A field-segmentation-based variational optical flow method for PIV measurements of nonuniform flows. Exp Fluids 60(9):1–17
go back to reference Lu J, Yang H, Zhang Q, Yin Z (2021) An accurate optical flow estimation of PIV using fluid velocity decomposition. Exp Fluids 62(4):1–16 Lu J, Yang H, Zhang Q, Yin Z (2021) An accurate optical flow estimation of PIV using fluid velocity decomposition. Exp Fluids 62(4):1–16
go back to reference Maas H, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15(2):133–146 Maas H, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15(2):133–146
go back to reference Mallery K, Shao S, Hong J (2020) Dense particle tracking using a learned predictive model. Exp Fluids 61:1–14 Mallery K, Shao S, Hong J (2020) Dense particle tracking using a learned predictive model. Exp Fluids 61:1–14
go back to reference Mears LJ, Sellappan P, Alvi FS (2021) Three-dimensional flowfield in a fin-generated shock wave/boundary-layer interaction using tomographic PIV. AIAA J 59(12):4869–4880 Mears LJ, Sellappan P, Alvi FS (2021) Three-dimensional flowfield in a fin-generated shock wave/boundary-layer interaction using tomographic PIV. AIAA J 59(12):4869–4880
go back to reference Meinhardt-Llopis E, Sánchez J (2013) Horn-schunck optical flow with a multi-scale strategy. Image Processing on line Meinhardt-Llopis E, Sánchez J (2013) Horn-schunck optical flow with a multi-scale strategy. Image Processing on line
go back to reference Michaelis D, Poelma C, Scarano F, Westerweel J, Wieneke B (2006) A 3d time-resolved cylinder wake survey by tomographic PIV. In: 12th Int. Symposium on Flow Visualization Michaelis D, Poelma C, Scarano F, Westerweel J, Wieneke B (2006) A 3d time-resolved cylinder wake survey by tomographic PIV. In: 12th Int. Symposium on Flow Visualization
go back to reference Novara M, Scarano F (2012) Performances of motion tracking enhanced Tomo-PIV on turbulent shear flows. Exp Fluids 52(4):1027–1041 Novara M, Scarano F (2012) Performances of motion tracking enhanced Tomo-PIV on turbulent shear flows. Exp Fluids 52(4):1027–1041
go back to reference Novara M, Batenburg KJ, Scarano F (2010) Motion tracking-enhanced mart for tomographic PIV. Meas Sci Technol 21(3):035401 Novara M, Batenburg KJ, Scarano F (2010) Motion tracking-enhanced mart for tomographic PIV. Meas Sci Technol 21(3):035401
go back to reference Ouyang Z, Yang H, Huang Y, Zhang Q, Yin Z (2021) A circulant-matrix-based hybrid optical flow method for PIV measurement with large displacement. Exp Fluids 62(11):1–18 Ouyang Z, Yang H, Huang Y, Zhang Q, Yin Z (2021) A circulant-matrix-based hybrid optical flow method for PIV measurement with large displacement. Exp Fluids 62(11):1–18
go back to reference Pérez JS, López NM, de la Nuez AS (2013) Robust optical flow estimation. Image Process Line 3:252–270 Pérez JS, López NM, de la Nuez AS (2013) Robust optical flow estimation. Image Process Line 3:252–270
go back to reference Perlman E, Burns R, Li Y, Meneveau C (2007) Data exploration of turbulence simulations using a database cluster. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp 1–11 Perlman E, Burns R, Li Y, Meneveau C (2007) Data exploration of turbulence simulations using a database cluster. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp 1–11
go back to reference Regert T, Tremblais B, David L (2010) Parallelized 3d optical flow method for fluid mechanics applications. In: Fifth international symposium on 3D data processing, visualization and transmission, p 20 Regert T, Tremblais B, David L (2010) Parallelized 3d optical flow method for fluid mechanics applications. In: Fifth international symposium on 3D data processing, visualization and transmission, p 20
go back to reference Rinoshika H, Rinoshika A, Wang JJ, Zheng Y (2021) 3d flow structures behind a wall-mounted short cylinder. Ocean Eng 221:108535 Rinoshika H, Rinoshika A, Wang JJ, Zheng Y (2021) 3d flow structures behind a wall-mounted short cylinder. Ocean Eng 221:108535
go back to reference Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32 Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32
go back to reference Scarano F (2012) Tomographic PIV: principles and practice. Meas Sci Technol 24(1):012001 Scarano F (2012) Tomographic PIV: principles and practice. Meas Sci Technol 24(1):012001
go back to reference Scarano F, Riethmuller ML (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26(6):513–523 Scarano F, Riethmuller ML (1999) Iterative multigrid approach in PIV image processing with discrete window offset. Exp Fluids 26(6):513–523
go back to reference Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(1):S051–S060 Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(1):S051–S060
go back to reference Sun D, Roth S, Black MJ (2014) A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int J Comput Vision 106(2):115–137 Sun D, Roth S, Black MJ (2014) A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int J Comput Vision 106(2):115–137
go back to reference Thielicke W, Stamhuis E (2014) Pivlab–towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. Journal of open research software 2(1) Thielicke W, Stamhuis E (2014) Pivlab–towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. Journal of open research software 2(1)
go back to reference Tu H, Wang F, Wang H, Gao Q, Wei R (2022) Experimental study on wake flows of a live fish with time-resolved tomographic PIV and pressure reconstruction. Exp Fluids 63(1):1–12 Tu H, Wang F, Wang H, Gao Q, Wei R (2022) Experimental study on wake flows of a live fish with time-resolved tomographic PIV and pressure reconstruction. Exp Fluids 63(1):1–12
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612 Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612
go back to reference Wang C, Gao Q, Wei R, Li T, Wang J (2016) 3d flow visualization and tomographic particle image velocimetry for vortex breakdown over a non-slender delta wing. Exp Fluids 57:1–13 Wang C, Gao Q, Wei R, Li T, Wang J (2016) 3d flow visualization and tomographic particle image velocimetry for vortex breakdown over a non-slender delta wing. Exp Fluids 57:1–13
go back to reference Wang H, Gao Q, Wei R, Wang J (2016) Intensity-enhanced mart for tomographic PIV. Exp Fluids 57(5):1–19 Wang H, Gao Q, Wei R, Wang J (2016) Intensity-enhanced mart for tomographic PIV. Exp Fluids 57(5):1–19
go back to reference Wang C, Gao Q, Wang J, Wang B, Pan C (2019) Experimental study on dominant vortex structures in near-wall region of turbulent boundary layer based on tomographic particle image velocimetry. J Fluid Mech 874:426–454 Wang C, Gao Q, Wang J, Wang B, Pan C (2019) Experimental study on dominant vortex structures in near-wall region of turbulent boundary layer based on tomographic particle image velocimetry. J Fluid Mech 874:426–454
go back to reference Yang H, Shi H, Lu J, Kang M, Yin Z (2021) Highly accurate optical flow method based on volumetric segmentation for 3d piv. In: 14th International Symposium on Particle Image Velocimetry, vol 1 Yang H, Shi H, Lu J, Kang M, Yin Z (2021) Highly accurate optical flow method based on volumetric segmentation for 3d piv. In: 14th International Symposium on Particle Image Velocimetry, vol 1
go back to reference Yu K, Xu J, Tang L, Mo J (2015) New adaptive sampling method in particle image velocimetry. Meas Sci Technol 26(3):037002 Yu K, Xu J, Tang L, Mo J (2015) New adaptive sampling method in particle image velocimetry. Meas Sci Technol 26(3):037002
go back to reference Zeng X, He C, Liu Y (2022) GPU-accelerated MART and concurrent cross-correlation for tomographic PIV. Exp Fluids 63(5):1–18 Zeng X, He C, Liu Y (2022) GPU-accelerated MART and concurrent cross-correlation for tomographic PIV. Exp Fluids 63(5):1–18
go back to reference Zhao Z, Shi S (2021) Volumetric calibration for scheimpflug light-field PIV. Exp Fluids 62(12):1–18 Zhao Z, Shi S (2021) Volumetric calibration for scheimpflug light-field PIV. Exp Fluids 62(12):1–18
go back to reference Zhong Q, Yang H, Yin Z (2017) An optical flow algorithm based on gradient constancy assumption for PIV image processing. Meas Sci Technol 28(5):055208 Zhong Q, Yang H, Yin Z (2017) An optical flow algorithm based on gradient constancy assumption for PIV image processing. Meas Sci Technol 28(5):055208
Metadata
Title
A velocity decomposition-based 3D optical flow method for accurate Tomo-PIV measurement
Authors
Menggang Kang
Hua Yang
Zhouping Yin
Qi Gao
Xiaoyu Liu
Publication date
01-07-2023
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 7/2023
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-023-03659-y

Other articles of this Issue 7/2023

Experiments in Fluids 7/2023 Go to the issue

Premium Partners