Skip to main content
Top

2024 | OriginalPaper | Chapter

A Visual Investigation of the Phase Transition of Cyclopentane Hydrates in Porous Media Under the Electrostatic Field

Authors : Bowen Wang, Muyi Li, Jian Wang, Jiafang Xu

Published in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrates, which serve as a novel form of clean energy and a key component in carbon capture and storage (CCS), require a thorough understanding of their phase transition mechanisms within porous media for the effective implementation of related technologies. In this study, a microfluidic chip was developed to emulate subsurface porous media and phase transition experiments were performed on cyclopentane (CP) hydrates. By means of microscopic observation, we analyzed the influence of an applied electrostatic field under identical subcooling conditions on hydrate morphology, growth rate, induction time, and equilibrium temperature. The results show that the application of an electrostatic field has the ability to alter the growth morphology of CP hydrate crystals, shortening the induction time, although lowering the phase equilibrium temperature. Furthermore, both the induction time and the phase equilibrium temperature increase with increasing electric field intensity. Under the influence of an electrostatic field, the growth rate of CP hydrates exhibits a noticeable enhancement, with an initial increase followed by a subsequent decrease as the electric field intensity escalates. This study provides valuable insights into the application of electric fields in hydrate development and hydrate-based CCS technologies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, S., Sun, Y., Chen, W., et al.: Analyses of gas production methods and offshore production tests of natural gas hydrates. J. Eng. Geol. 27(1), 55–68 (2019) Li, S., Sun, Y., Chen, W., et al.: Analyses of gas production methods and offshore production tests of natural gas hydrates. J. Eng. Geol. 27(1), 55–68 (2019)
2.
go back to reference Sloan, E.D.: Fundamental principles and applications of natural gas hydrates. Nature 426(6964), 353–359 (2003)CrossRef Sloan, E.D.: Fundamental principles and applications of natural gas hydrates. Nature 426(6964), 353–359 (2003)CrossRef
3.
go back to reference Veluswamy, H.P., Bhattacharjee, G., Liao, J., et al.: Macroscopic kinetic investigations on mixed natural gas hydrate formation for gas storage application. Energy Fuels 34(12), 15257–15269 (2020)CrossRef Veluswamy, H.P., Bhattacharjee, G., Liao, J., et al.: Macroscopic kinetic investigations on mixed natural gas hydrate formation for gas storage application. Energy Fuels 34(12), 15257–15269 (2020)CrossRef
4.
go back to reference Veluswamy, H.P., Linga, P.: Natural gas hydrate formation using saline/seawater for gas storage application. Energy Fuels 35(7), 5988–6002 (2021)CrossRef Veluswamy, H.P., Linga, P.: Natural gas hydrate formation using saline/seawater for gas storage application. Energy Fuels 35(7), 5988–6002 (2021)CrossRef
5.
go back to reference Bavoh, C.B., Lal, B., Osei, H., et al.: A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage. J. Nat. Gas Sci. Eng. 64, 52–71 (2019)CrossRef Bavoh, C.B., Lal, B., Osei, H., et al.: A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage. J. Nat. Gas Sci. Eng. 64, 52–71 (2019)CrossRef
6.
go back to reference Sabil, K.M., Partoon, B.: Recent advances on carbon dioxide capture through a hydrate-based gas separation process. Current Opinion in Green and Sustain. Chem. 11, 22–26 (2018)CrossRef Sabil, K.M., Partoon, B.: Recent advances on carbon dioxide capture through a hydrate-based gas separation process. Current Opinion in Green and Sustain. Chem. 11, 22–26 (2018)CrossRef
7.
go back to reference Liu, J., Ding, J., Liang, D.: Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed. Energy 157, 54–64 (2018)CrossRef Liu, J., Ding, J., Liang, D.: Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed. Energy 157, 54–64 (2018)CrossRef
8.
go back to reference Zhang, Q., Zheng, J., Zhang, B., et al.: Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids. Appl. Energy 287, 116576 (2021)CrossRef Zhang, Q., Zheng, J., Zhang, B., et al.: Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids. Appl. Energy 287, 116576 (2021)CrossRef
9.
go back to reference Lv, Q., Li, X., Li, G.: Seawater desalination by hydrate formation and pellet production process. Energy Procedia 158, 5144–5148 (2019)CrossRef Lv, Q., Li, X., Li, G.: Seawater desalination by hydrate formation and pellet production process. Energy Procedia 158, 5144–5148 (2019)CrossRef
10.
go back to reference Khan, M.S., Lal, B., Sabil, K.M., et al.: Desalination of seawater through gas hydrate process: an overview. J. Adv. Res. Fluid Mech. Thermal Sci. 55(1), 65–73 (2019) Khan, M.S., Lal, B., Sabil, K.M., et al.: Desalination of seawater through gas hydrate process: an overview. J. Adv. Res. Fluid Mech. Thermal Sci. 55(1), 65–73 (2019)
11.
go back to reference Zheng, J., Cheng, F., Li, Y., et al.: Progress and trends in hydrate based desalination (HBD) technology: a review. Chin. J. Chem. Eng. 27(9), 2037–2043 (2019)CrossRef Zheng, J., Cheng, F., Li, Y., et al.: Progress and trends in hydrate based desalination (HBD) technology: a review. Chin. J. Chem. Eng. 27(9), 2037–2043 (2019)CrossRef
12.
go back to reference Delahaye, A., Fournaison, L., Dalmazzone, D.: Use of hydrates for cold storage and distribution in refrigeration and air‐conditioning applications. Gas Hydrates 2: Geoscience Issues and Potential Industrial Applications 315–358 (2018) Delahaye, A., Fournaison, L., Dalmazzone, D.: Use of hydrates for cold storage and distribution in refrigeration and air‐conditioning applications. Gas Hydrates 2: Geoscience Issues and Potential Industrial Applications 315–358 (2018)
13.
go back to reference Xie, N., Tan, C., Yang, S., et al.: Conceptual design and analysis of a novel CO2 hydrate-based refrigeration system with cold energy storage. ACS Sustain. Chem. Eng. 7(1), 1502–1511 (2018)CrossRef Xie, N., Tan, C., Yang, S., et al.: Conceptual design and analysis of a novel CO2 hydrate-based refrigeration system with cold energy storage. ACS Sustain. Chem. Eng. 7(1), 1502–1511 (2018)CrossRef
14.
go back to reference Hashemi, H., Babaee, S., Mohammadi, A.H., et al.: State of the art and kinetics of refrigerant hydrate formation. Int. J. Refrig. 98, 410–427 (2019)CrossRef Hashemi, H., Babaee, S., Mohammadi, A.H., et al.: State of the art and kinetics of refrigerant hydrate formation. Int. J. Refrig. 98, 410–427 (2019)CrossRef
15.
go back to reference Carpenter, K., Bahadur, V.: Electrofreezing of water droplets under electrowetting fields. Langmuir 31(7), 2243 (2015)CrossRef Carpenter, K., Bahadur, V.: Electrofreezing of water droplets under electrowetting fields. Langmuir 31(7), 2243 (2015)CrossRef
16.
17.
go back to reference Sutmann, G.: Structure formation and dynamics of water in strong external electric fields. J. Electroanal. Chem. 450(2), 289–302 (1998)CrossRef Sutmann, G.: Structure formation and dynamics of water in strong external electric fields. J. Electroanal. Chem. 450(2), 289–302 (1998)CrossRef
18.
go back to reference Park, T.K., et al.: Effect of electric field on gas hydrate nucleation kinetics: evidence for the enhanced kinetics of hydrate nucleation by negatively charged clay surfaces. Environ. Sci. Technol. ES&T, 52(5), 3267–3274 (2018) Park, T.K., et al.: Effect of electric field on gas hydrate nucleation kinetics: evidence for the enhanced kinetics of hydrate nucleation by negatively charged clay surfaces. Environ. Sci. Technol. ES&T, 52(5), 3267–3274 (2018)
19.
go back to reference Pahlavanzadeh, H., Hejazi, S., Manteghian, M.: Hydrate formation under static and pulsed electric fields. J. Nat. Gas Sci. Eng. 77, 103232 (2020)CrossRef Pahlavanzadeh, H., Hejazi, S., Manteghian, M.: Hydrate formation under static and pulsed electric fields. J. Nat. Gas Sci. Eng. 77, 103232 (2020)CrossRef
20.
go back to reference Chen, B., Dong, H., Sun, H., et al.: Effect of a weak electric field on THF hydrate formation: Induction time and morphology. J. Petrol. Sci. Eng. 194, 107486 (2020)CrossRef Chen, B., Dong, H., Sun, H., et al.: Effect of a weak electric field on THF hydrate formation: Induction time and morphology. J. Petrol. Sci. Eng. 194, 107486 (2020)CrossRef
21.
go back to reference Guo, Y., Wang, Q., Guo, Z.: Micro-fluidic chip: mini reservoir laboratory in oil and gas fields. Pet. Sci. Technol. Forum 37(1), 39–42 (2018) Guo, Y., Wang, Q., Guo, Z.: Micro-fluidic chip: mini reservoir laboratory in oil and gas fields. Pet. Sci. Technol. Forum 37(1), 39–42 (2018)
22.
go back to reference Hauge, L.P., Gauteplass, J., Hoyland, M.D., et al.: Pore-level hydrate formation mechanisms using realistic rock structures in high-pressure silicon micromodels. Int. J. Greenhouse Gas Control 53, 178 (2016)CrossRef Hauge, L.P., Gauteplass, J., Hoyland, M.D., et al.: Pore-level hydrate formation mechanisms using realistic rock structures in high-pressure silicon micromodels. Int. J. Greenhouse Gas Control 53, 178 (2016)CrossRef
23.
go back to reference Lv, J., Xue, K., Zhang, Z., et al.: Pore-scale investigation of hydrate morphology evolution and seepage characteristics in hydrate bearing microfluidic chip. J. Nat. Gas Sci. Eng. 88(9), 103881 (2021)CrossRef Lv, J., Xue, K., Zhang, Z., et al.: Pore-scale investigation of hydrate morphology evolution and seepage characteristics in hydrate bearing microfluidic chip. J. Nat. Gas Sci. Eng. 88(9), 103881 (2021)CrossRef
24.
go back to reference Chen, Y., Gao, Y., Zhang, N., et al.: Microfluidics application for monitoring hydrate phase transition in flow throats and evaluation of its saturation measurement. Chem. Eng. J. 383, 123081 (2020)CrossRef Chen, Y., Gao, Y., Zhang, N., et al.: Microfluidics application for monitoring hydrate phase transition in flow throats and evaluation of its saturation measurement. Chem. Eng. J. 383, 123081 (2020)CrossRef
25.
go back to reference Sloan, E.D., Jr., Koh, C.A.: Clathrate Hydrates of Natural Gases. CRC Press, New York (2007)CrossRef Sloan, E.D., Jr., Koh, C.A.: Clathrate Hydrates of Natural Gases. CRC Press, New York (2007)CrossRef
26.
go back to reference Chen, Y., Shi, B., Fu, S., et al.: Kinetic and rheological investigation of cyclopentane hydrate formation in waxy water-in-oil emulsions. Fuel 287, 119568 (2021)CrossRef Chen, Y., Shi, B., Fu, S., et al.: Kinetic and rheological investigation of cyclopentane hydrate formation in waxy water-in-oil emulsions. Fuel 287, 119568 (2021)CrossRef
27.
go back to reference Liu, Z., Li, Y., Wang, W., et al.: Investigation into the formation, blockage and dissociation of cyclopentane hydrate in a visual flow loop. Fuel 307, 121730 (2022)CrossRef Liu, Z., Li, Y., Wang, W., et al.: Investigation into the formation, blockage and dissociation of cyclopentane hydrate in a visual flow loop. Fuel 307, 121730 (2022)CrossRef
28.
go back to reference Nakajima, M., Ohmura, R., Mori, Y.H.: Clathrate hydrate formation from cyclopentane-in-water emulsions. Ind. Eng. Chem. Res. 47(22), 8933–8939 (2008)CrossRef Nakajima, M., Ohmura, R., Mori, Y.H.: Clathrate hydrate formation from cyclopentane-in-water emulsions. Ind. Eng. Chem. Res. 47(22), 8933–8939 (2008)CrossRef
29.
go back to reference Meng, Z., Xu, J., Hao, Y., et al.: Molecular study on the behavior of CO2 hydrate growth promoted by the electric field. Geoenergy Sci. Eng. 221, 111261 (2023)CrossRef Meng, Z., Xu, J., Hao, Y., et al.: Molecular study on the behavior of CO2 hydrate growth promoted by the electric field. Geoenergy Sci. Eng. 221, 111261 (2023)CrossRef
30.
go back to reference Hao, Y., Xu, J., Yuan, S., et al.: Molecular dynamics study of electric field enhanced hydrate growth for gas storage. J. Nat. Gas Sci. Eng. 103, 104617 (2022)CrossRef Hao, Y., Xu, J., Yuan, S., et al.: Molecular dynamics study of electric field enhanced hydrate growth for gas storage. J. Nat. Gas Sci. Eng. 103, 104617 (2022)CrossRef
Metadata
Title
A Visual Investigation of the Phase Transition of Cyclopentane Hydrates in Porous Media Under the Electrostatic Field
Authors
Bowen Wang
Muyi Li
Jian Wang
Jiafang Xu
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_39