Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

A Weight-Selection Strategy on Training Deep Neural Networks for Imbalanced Classification

Authors : Antonio Sze-To, Andrew K. C. Wong

Published in: Image Analysis and Recognition

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep Neural Networks (DNN) have recently received great attention due to their superior performance in many machining-learning problems. However, the use of DNN is still impeded, if the input data is imbalanced. Imbalanced classification refers to the problem that one class contains a much smaller number of samples than the others in classification. It poses a great challenge to existing classifiers including DNN, due to the difficulty in recognizing the minority class. So far, there are still limited studies on how to train DNN for imbalanced classification. In this study, we propose a new strategy to reduce over-fitting in training DNN for imbalanced classification based on weight selection. In training DNN, by splitting the original training set into two subsets, one used for training to update weights, and the other for validation to select weights, the weights that render the best performance in the validation set would be selected. To our knowledge, it is the first systematic study to examine a weight-selection strategy on training DNN for imbalanced classification. Demonstrated by experiments on 10 imbalanced datasets obtained from MNIST, the DNN trained by our new strategy outperformed the DNN trained by a standard strategy and the DNN trained by cost-sensitive learning with statistical significance (p = 0.00512). Surprisingly, the DNN trained by our new strategy was trained on 20% less training images, corresponding to 12,000 less training images, but still achieved an outperforming performance in all 10 imbalanced datasets. The source code is available in https://​github.​com/​antoniosehk/​WSDeepNN.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
2.
go back to reference Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRef Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRef
3.
go back to reference Bengio, Y., et al.: Learning deep architectures for AI. Foundations and trends\({\textregistered }\). Mach. Learn. 2(1), 1–127 (2009)MathSciNetCrossRefMATH Bengio, Y., et al.: Learning deep architectures for AI. Foundations and trends\({\textregistered }\). Mach. Learn. 2(1), 1–127 (2009)MathSciNetCrossRefMATH
4.
go back to reference Huang, C., Li, Y., Change Loy, C., Tang, X.: Learning deep representation for imbalanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5375–5384 (2016) Huang, C., Li, Y., Change Loy, C., Tang, X.: Learning deep representation for imbalanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5375–5384 (2016)
5.
go back to reference Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recogn. Artif. Intell. 23(04), 687–719 (2009)CrossRef Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recogn. Artif. Intell. 23(04), 687–719 (2009)CrossRef
6.
go back to reference He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRef He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRef
7.
go back to reference Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)CrossRef Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)CrossRef
8.
go back to reference Masko, D., Hensman, P.: The impact of imbalanced training data for convolutional neural networks. In: Degree Project in Computer Science, pp. 1–28. KTH Royal Institute of Technology (2015) Masko, D., Hensman, P.: The impact of imbalanced training data for convolutional neural networks. In: Degree Project in Computer Science, pp. 1–28. KTH Royal Institute of Technology (2015)
9.
go back to reference Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)MATH Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)MATH
10.
go back to reference Ting, K.M.: A comparative study of cost-sensitive boosting algorithms. In: In Proceedings of the 17th International Conference on Machine Learning. Citeseer (2000) Ting, K.M.: A comparative study of cost-sensitive boosting algorithms. In: In Proceedings of the 17th International Conference on Machine Learning. Citeseer (2000)
11.
go back to reference Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014) Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)
12.
go back to reference Khan, S.H., Bennamoun, M., Sohel, F., Togneri, R.: Cost sensitive learning of deep feature representations from imbalanced data. arXiv preprint arXiv:1508.03422 (2015) Khan, S.H., Bennamoun, M., Sohel, F., Togneri, R.: Cost sensitive learning of deep feature representations from imbalanced data. arXiv preprint arXiv:​1508.​03422 (2015)
13.
go back to reference Zhang, C., Gao, W., Song, J., Jiang, J.: An imbalanced data classification algorithm of improved autoencoder neural network. In: 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), pp. 95–99. IEEE (2016) Zhang, C., Gao, W., Song, J., Jiang, J.: An imbalanced data classification algorithm of improved autoencoder neural network. In: 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), pp. 95–99. IEEE (2016)
14.
go back to reference Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3982–3991 (2015) Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3982–3991 (2015)
15.
go back to reference Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.J.: Training deep neural networks on imbalanced data sets. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4368–4374. IEEE (2016) Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.J.: Training deep neural networks on imbalanced data sets. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4368–4374. IEEE (2016)
16.
go back to reference Ng, W.W., Zeng, G., Zhang, J., Yeung, D.S., Pedrycz, W.: Dual autoencoders features for imbalance classification problem. Pattern Recogn. 60, 875–889 (2016)CrossRef Ng, W.W., Zeng, G., Zhang, J., Yeung, D.S., Pedrycz, W.: Dual autoencoders features for imbalance classification problem. Pattern Recogn. 60, 875–889 (2016)CrossRef
17.
go back to reference Sutskever, I.: Training recurrent neural networks. Ph.D. thesis, University of Toronto (2013) Sutskever, I.: Training recurrent neural networks. Ph.D. thesis, University of Toronto (2013)
18.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
19.
go back to reference An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. In: Special Lecture on IE, vol. 2, pp. 1–18. SNU Data Mining Center (2015) An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. In: Special Lecture on IE, vol. 2, pp. 1–18. SNU Data Mining Center (2015)
20.
go back to reference Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2) (2012) Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2) (2012)
21.
go back to reference Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N., Warde-Farley, D., Bengio, Y.: Theano: new features and speed improvements. arXiv preprint arXiv:1211.5590 (2012) Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N., Warde-Farley, D., Bengio, Y.: Theano: new features and speed improvements. arXiv preprint arXiv:​1211.​5590 (2012)
22.
go back to reference Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)
23.
go back to reference Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)MathSciNetMATH Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)MathSciNetMATH
Metadata
Title
A Weight-Selection Strategy on Training Deep Neural Networks for Imbalanced Classification
Authors
Antonio Sze-To
Andrew K. C. Wong
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-59876-5_1

Premium Partner