Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 9/2023

28-04-2023 | Original Article

AANet: adaptive attention network for rolling bearing fault diagnosis under varying loads

Authors: Shixin Sun, Jie Gao, Wei Wang, Jinsong Du, Xu Yang

Published in: International Journal of Machine Learning and Cybernetics | Issue 9/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, modern intelligent fault diagnosis algorithms based on deep learning have been widely used to recognize the health state of rolling bearings. However, the constantly varying load in real industry leads to unsatisfactory diagnosis results. How to make the models effectively diagnose the health state of rolling bearings under varying loads is a key issue. In this paper, an Adaptive Attention Network (AANet) is proposed to resolve the issue. That the interference is introduced by the Multi-scale Convolution Module with wide kernels (MCM) at the head of the AANet is the premise for extending the model to other loads. And the Adaptive Attention Modules (AAMs) embedded in the AANet distinguishe state-related features and unrelated features, which enhances the diagnostic ability of the model across loads. In order to verify the effectiveness of the algorithm, experiments have been performed on a public data set. Experimental results show that the average accuracy of this algorithm achieves 0.976, which can effectively recognize the health state of rolling bearings under varying loads, compared to other algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Gan M, Wang C (2016) Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech Syst Signal Process 72:92–104CrossRef Gan M, Wang C (2016) Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech Syst Signal Process 72:92–104CrossRef
2.
go back to reference Lu C, Wang Z, Zhou B (2017) Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification. Adv Eng Inform 32:139–151CrossRef Lu C, Wang Z, Zhou B (2017) Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification. Adv Eng Inform 32:139–151CrossRef
3.
go back to reference Guo X, Chen L, Shen C (2016) Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 93:490–502CrossRef Guo X, Chen L, Shen C (2016) Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 93:490–502CrossRef
4.
go back to reference Lu C, Wang ZY, Qin WL et al (2017) Fault diagnosis of rotary machinery components using a stacked de-noising autoencoder-based health state identification. Signal Process 130:377–388CrossRef Lu C, Wang ZY, Qin WL et al (2017) Fault diagnosis of rotary machinery components using a stacked de-noising autoencoder-based health state identification. Signal Process 130:377–388CrossRef
5.
go back to reference Xia M, Li T, Xu L et al (2017) Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans Mechatron 23(1):101–110CrossRef Xia M, Li T, Xu L et al (2017) Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans Mechatron 23(1):101–110CrossRef
6.
go back to reference Zhang Y, Li X, Gao L et al (2018) Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning. J Manuf Syst 48:34–50CrossRef Zhang Y, Li X, Gao L et al (2018) Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning. J Manuf Syst 48:34–50CrossRef
7.
go back to reference Zhao R, Yan R, Chen Z et al (2019) Deep learning and its applications to machine health monitoring. Mech Syst Signal Process 115:213–237CrossRef Zhao R, Yan R, Chen Z et al (2019) Deep learning and its applications to machine health monitoring. Mech Syst Signal Process 115:213–237CrossRef
8.
go back to reference Jia F, Lei Y, Lin J et al (2016) Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech Syst Signal Process 72:303–315CrossRef Jia F, Lei Y, Lin J et al (2016) Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech Syst Signal Process 72:303–315CrossRef
9.
go back to reference Zhang W, Peng G, Li C et al (2017) A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors 17(2):425CrossRef Zhang W, Peng G, Li C et al (2017) A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors 17(2):425CrossRef
10.
go back to reference Liu H, Zhou J, Xu Y et al (2018) Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks. Neurocomputing 315:412–424CrossRef Liu H, Zhou J, Xu Y et al (2018) Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks. Neurocomputing 315:412–424CrossRef
11.
go back to reference Zhang W, Li C, Peng G et al (2018) A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech Syst Signal Process 100:439–453CrossRef Zhang W, Li C, Peng G et al (2018) A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech Syst Signal Process 100:439–453CrossRef
12.
go back to reference Liu H, Yao D, Yang J et al (2019) Lightweight convolutional neural network and its application in rolling bearing fault diagnosis under variable working conditions. Sensors 19(22):4827CrossRef Liu H, Yao D, Yang J et al (2019) Lightweight convolutional neural network and its application in rolling bearing fault diagnosis under variable working conditions. Sensors 19(22):4827CrossRef
13.
go back to reference Chen T, Wang Z, Yang X et al (2019) A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals. Measurement 148:106857CrossRef Chen T, Wang Z, Yang X et al (2019) A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals. Measurement 148:106857CrossRef
14.
go back to reference Tao H, Wang P, Chen Y et al (2020) An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks. J Franklin Inst 357(11):7286–7307MathSciNetCrossRefMATH Tao H, Wang P, Chen Y et al (2020) An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks. J Franklin Inst 357(11):7286–7307MathSciNetCrossRefMATH
15.
go back to reference Du Y, Wang A, Wang S et al (2020) Fault diagnosis under variable working conditions based on STFT and transfer deep residual network. Shock and Vibration 2020:1–18 Du Y, Wang A, Wang S et al (2020) Fault diagnosis under variable working conditions based on STFT and transfer deep residual network. Shock and Vibration 2020:1–18
16.
go back to reference Liang P, Deng C, Wu J et al (2020) Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network. Measurement 159:107768CrossRef Liang P, Deng C, Wu J et al (2020) Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network. Measurement 159:107768CrossRef
17.
go back to reference Wang Y, Ning D, Feng S (2020) A novel capsule network based on wide convolution and multi-scale convolution for fault diagnosis. Appl Sci 10(10):3659CrossRef Wang Y, Ning D, Feng S (2020) A novel capsule network based on wide convolution and multi-scale convolution for fault diagnosis. Appl Sci 10(10):3659CrossRef
18.
go back to reference Jin T, Yan C, Chen C et al (2021) Light neural network with fewer parameters based on CNN for fault diagnosis of rotating machinery. Measurement 181:109639CrossRef Jin T, Yan C, Chen C et al (2021) Light neural network with fewer parameters based on CNN for fault diagnosis of rotating machinery. Measurement 181:109639CrossRef
19.
go back to reference Chen CC, Liu Z, Yang G et al (2020) An improved fault diagnosis using 1D-convolutional neural network model. Electronics 10(1):59CrossRef Chen CC, Liu Z, Yang G et al (2020) An improved fault diagnosis using 1D-convolutional neural network model. Electronics 10(1):59CrossRef
20.
go back to reference He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778
21.
go back to reference Vincent P, Larochelle H, Bengio Y et al (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, pp. 1096–1103 Vincent P, Larochelle H, Bengio Y et al (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, pp. 1096–1103
22.
go back to reference Fu J, Liu J, Tian H et al (2019) Dual attention network for scene segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3146–3154 Fu J, Liu J, Tian H et al (2019) Dual attention network for scene segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3146–3154
23.
go back to reference Jiang JR, Lee JE, Zeng YM (2020) Time series multiple channel convolutional neural network with attention-based long short-term memory for predicting bearing remaining useful life. Sensors 20(1):166CrossRef Jiang JR, Lee JE, Zeng YM (2020) Time series multiple channel convolutional neural network with attention-based long short-term memory for predicting bearing remaining useful life. Sensors 20(1):166CrossRef
24.
go back to reference Wang F, Jiang M, Qian C et al (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3156–3164 Wang F, Jiang M, Qian C et al (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3156–3164
25.
go back to reference Xu K, Ba J, Kiros R et al (2015) Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning, pp. 2048–2057 Xu K, Ba J, Kiros R et al (2015) Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning, pp. 2048–2057
26.
go back to reference Chen L C, Yang Y, Wang J et al (2016) Attention to scale: Scale-aware semantic image segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3640–3649 Chen L C, Yang Y, Wang J et al (2016) Attention to scale: Scale-aware semantic image segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3640–3649
27.
go back to reference Jaderberg M, Simonyan K, Zisserman A (2015) Spatial transformer networks. Adv Neural Info Process Syst. 28:2017–2025 Jaderberg M, Simonyan K, Zisserman A (2015) Spatial transformer networks. Adv Neural Info Process Syst. 28:2017–2025
28.
go back to reference Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141.
29.
go back to reference Roy A G, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp. 421-429 Roy A G, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp. 421-429
30.
go back to reference Woo S, Park J, Lee J Y et al (2018) Cbam: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp. 3–19 Woo S, Park J, Lee J Y et al (2018) Cbam: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp. 3–19
31.
go back to reference Li X, Wang W, Hu X et al (2019) Selective kernel networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 510–519 Li X, Wang W, Hu X et al (2019) Selective kernel networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 510–519
32.
go back to reference Cao Y, Xu J, Lin S et al (2019) Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE international conference on computer vision workshops, pp. 1971–1980. Cao Y, Xu J, Lin S et al (2019) Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE international conference on computer vision workshops, pp. 1971–1980.
33.
go back to reference Wang H, Liu Z, Peng D et al (2019) Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis. IEEE Trans Industr Inf 16(9):5735–5745CrossRef Wang H, Liu Z, Peng D et al (2019) Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis. IEEE Trans Industr Inf 16(9):5735–5745CrossRef
34.
go back to reference Zhang W, Yang D, Wang H et al (2019) AESGRU: an attention-based temporal correlation approach for end-to-end machine health perception. IEEE Access 7:141487–141497CrossRef Zhang W, Yang D, Wang H et al (2019) AESGRU: an attention-based temporal correlation approach for end-to-end machine health perception. IEEE Access 7:141487–141497CrossRef
35.
go back to reference Li X, Zhang W, Ding Q (2019) Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism. Signal Process 161:136–154CrossRef Li X, Zhang W, Ding Q (2019) Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism. Signal Process 161:136–154CrossRef
36.
go back to reference Jin G, Zhu T, Akram MW et al (2020) An adaptive anti-noise neural network for bearing fault diagnosis under noise and varying load conditions. IEEE Access 8:74793–74807CrossRef Jin G, Zhu T, Akram MW et al (2020) An adaptive anti-noise neural network for bearing fault diagnosis under noise and varying load conditions. IEEE Access 8:74793–74807CrossRef
37.
go back to reference Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258 Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258
38.
go back to reference Howard A G, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. Howard A G, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:​1704.​04861, 2017.
39.
go back to reference Chen S, Liu Y, Gao X et al (2018) Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile device. In: Chinese conference on biometric recognition. Springer, Cham, 428–438. Chen S, Liu Y, Gao X et al (2018) Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile device. In: Chinese conference on biometric recognition. Springer, Cham, 428–438.
40.
go back to reference Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shiftarXiv preprint arXiv:1502.03167, 2015. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shiftarXiv preprint arXiv:​1502.​03167, 2015.
42.
go back to reference Sutskever I, Martens J, Dahl G et al (2013) On the importance of initialization and momentum in deep learning. In: International conference on machine learning, pp 1139–1147. Sutskever I, Martens J, Dahl G et al (2013) On the importance of initialization and momentum in deep learning. In: International conference on machine learning, pp 1139–1147.
43.
go back to reference Smith WA, Randall RB (2015) Rolling element bearing diagnostics using the case Western reserve university data: a benchmark study. Mech Syst Signal Process 64:100–131CrossRef Smith WA, Randall RB (2015) Rolling element bearing diagnostics using the case Western reserve university data: a benchmark study. Mech Syst Signal Process 64:100–131CrossRef
44.
go back to reference Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATH Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATH
Metadata
Title
AANet: adaptive attention network for rolling bearing fault diagnosis under varying loads
Authors
Shixin Sun
Jie Gao
Wei Wang
Jinsong Du
Xu Yang
Publication date
28-04-2023
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 9/2023
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01830-9

Other articles of this Issue 9/2023

International Journal of Machine Learning and Cybernetics 9/2023 Go to the issue